On reducing the cut ratio to the multicut problem

Nabil Kahale *

Abstract

We compare two multicommodity flow problems, the maximum sum of flow, and the maxi-
mum concurrent flow. We show that, for a given graph and a given set of & commodities with
specified demands, if the minimum capacity of a multicut is approximated by the maximum
sum of flow within a factor of «, for any subset of commodities, then the minimum cut ratio is
approximated by the maximum concurrent flow within a factor of O(aln k).

1 Introduction

Throughout this note, we are given an undirected graph G = (V, E) where each edge e is assigned
a nonnegative real number ¢(e), called capacity of e . A flow from a vertex s called source to
a vertex ¢ called sink is a function a from the set of paths P(s,t) from s to ¢ into the set of
nonnegative real numbers. The value of the flow o is ) pep(sy a(P). In a multicommodity flow
problem, we are given a set () of k& commodities. A commodity ¢ is specified by a pair of source
and sink (s;,¢;). A flow in this case is a function « that assigns a nonnegative number to each path
P € UicP(si,t;). A flow is feasible if the amount of flow traversing any given edge is bounded
above by the capacity of that edge, that is, 3~ p5. a(P) < c(e). The value of the flow from s; to #;
is defined as )" pep (s, 1) U P).

A cut U separating s and ¢ is a subset of vertices containing s but not containing ¢. The capacity
CcAP(U) of a cut U is the sum of the capacities of the edges with exactly one endpoint in U. It is
intuitively clear that the value of any feasible flow from s to ¢ is at most the capacity of any cut
separating s and t. A well known result by Ford and Fulkerson [1] states that in fact, the value of
the maximum flow between s and ¢ is equal to the minimum capacity of a cut between s and . A
multicut M is a set of edges such that in the graph (V, £ — M), each pair of terminals (s;,;) is
disconnected.

Two related optimization problems can be defined in multicommodity flow. The first problem
consists of maximizing the sum of flows between all pairs of terminals, subject to the capacity con-
straints. The maximum value for this problem will be called max-flow. The max-flow is obviously
upper bounded by the capacity of any multicut. Unlike the case with only one commodity, the
max-flow is not equal to the minimum capacity of a multicut. However, an approximate min-max
theorem holds in this case: the max-flow is lower bounded by the minimum capacity of a multicut [2]
divided by a factor proportional to In k.
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In the second problem, a demand d(7) is associated to each commodity :. We want to calculate
the maximum fraction f such that there exists a feasible flow with value fd(¢) from s; to ¢;, for
each commodity ¢. The maximum f will be called the maximum concurrent flow. For each cut
U, denote by DEM(U) the sum of the demands of the commodities with exactly one endpoint in
U. The value of f is clearly upper bounded by cap(U)/DEM(U), for any cut U. In a series of
papers [2, 4, 6, 7], it has been shown that an approximate min-max theorem holds also in this case:
the maximum concurrent flow is lower bounded by the minimum cut ratio cap(U)/DEM(U) divided
by a factor proportional to In? k. The multicommodity flow problem has been used as a basic step
to approximately solving a number of NP-hard problems, including graph bisection, deleting the
minimum number of edges to make a graph bipartite, and minimum chordalization.

For a subset A of commodities, we denote by F(A) the max-flow of the multicommodity problem
where only the commodities in A are considered. Our main result is that it is always possible to
reduce the problem of approximating the cut ratio by the maximum concurrent flow to the problem
of approximating the max-flow by the minimum multicut. More precisely,

Theorem 1 Suppose there exists § € (0, 1] that may depend on the parameters of the problem such
that for any subset A of commodities, the maz-flow F(A) is lower bounded by 3 times the size of
the minimum multicut separating all the commodities in A. Then

. car(U) . car(U)
Qp/Ink —— L < f< — .
(5/In )Iranl% DEM(U) — /< vev DEM(U)
Moreover, if there exists a polynomial time algorithm that, for any subset A of commodities, outputs
a multicut M separating the commodities in A and such that 3 cap(M) < F(A), then there exists
a polynomial time algorithm that finds a cut U such that
cap(U)
QB/Ink)———= < f. 1
(B/ k) < S 1)
For a subset A of commodities, we also denote by DEM(A) the sum of demands of the com-
modities in A. In section 2, we study the relation between the maximum concurrent flow and the
minimum max-flow ratio, which is the minimum over all subsets A of commodities of F(A)/DEM(A).
The maximum concurrent flow is clearly upper bounded by the minimum max-flow ratio. We show
that the maximum concurrent flow is lower bounded by the minimum max-flow ratio divided by a
factor proportional to In k.

2 Concurrent low and max-flow ratio

The commodities will be usually labeled from 1 to k. Define D to be the sum of all the demands.

Theorem 2 If the demands are integral, we have

1 . F(A) < f<mi F(A)
Hp 420 DEM(A) =7 ~ bt DEM(A)’

(2)

Proof The upper bound is straightforward. To prove the lower bound, we observe that the dual
linear program of the concurrent multicommodity flow problem is

I': minimize Y I(e)c(e)

eelF



subject to:

Z d(i)distl(si,ti)
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l(e) > 0, Yee E (4)

where [ ranges over the set of length functions on the edges, and dist;(s;,¢;) is the distance between
s; and t; corresponding to [.

Let [* be a length function that optimizes this linear program. Relabel the demands by de-
creasing order of the distance function, so that

diStl* (Sl,tl) Z diStp(Sz,tz) Z e 2 diStl* (.Sk,tk). (5)

We claim that there exists an index j € () such that

1

diste(s5,5) 2 = (6)

where a(j) = f=1 d(¢). Indeed, assume for contradiction that Eq. 6 does not hold for any index
Jj € Q. An easy calculation then shows
k k

1 d(j)

d(j)dist=(sj,t;) < — ) —=%
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_ if a(j) —a(j—1)
Hp = a(j)

since a(k) = D. But this contradicts with Eq. 3.

Now, we restrict our attention to the demands {(s;,t;),7 € Z}, where Z = {1,2,...5} and j
satisfies Eq. 6. We observe that the dual linear program corresponding to the maximum multicom-
modity flow for this set of demands is

minimize Z I(e)c(e)

ecel

subject to:

distl(si,ti) > 1, Vie Z, (7)
lle) > 0, Vee E (8)

Therefore, for any length function [ satisfying Eqs. 7 and 8, we have F(Z) < 3" cp l(e)c(e) by weak
duality. But Eq. 5 shows that the length function [*/dist;«(s;,¢;) satisfies these equations, and so

dlStl*(S], E l* =

eel



Combining this with Eq. 6 and noting that a(j) = DEM(Z), we have

L F(Z) 1 F(A)

P — .
U HpoeMm(Z) — Hp ﬂ“gl% DEM(A)

Theorem 3 Without any integrality assumptions on the demands, we have

1 F(A) F(A)
1+ 10(D/dypin) ACQ DEM(A) s/sm 5 DEM(A)’ (9)

Proof The proof is almost identical to the proof of theorem 2. The only difference is that we
now upper bound (a(j)— a(j —1))/a(j) by Ina(j) — lna(j — 1), and so

k . k
Z =7 g Z (Ina(j) —Ina(j — 1)) =1+ 1In(D/dmin)-
|

We now use the method in [7] to replace the factor In(D/dmyn) by O(ln k).

Theorem 4 For any instance of the multicommodity flow problem, we have

F(A)
Elngg DEM(A)’

Q(1/Ink) chin F4)

CQ DEM(A) sfs

(10)

Proof Asin [7], we decompose the commodities into groups @7, for r > 1, such that Q" consists
of the commodities with demands between (4k)" 1dy;, and (4k) dpin. Each group gives rise to a
different multicommodity flow problem, where only the commodities in group " are considered
and the other commodities are ignored. Quantities related to the multicommodity flow problem of
the group @7 will be superscripted by r. The following lemma is central in our analysis:

Lemma 1 [7] f > (1/4)min, f".

We now apply theorem 3 to each group @". First, we note that the sum of demands of the
commodities in each group is upper bounded by a factor of 4k? from the minimum demand in that
group. On the other hand, it is clear that DEM"(A) < DEM(A) for any subset U of Q". Therefore,
for any group @7,

F(A) F(4)

">Q(1/Ink ————=2>Q(1/Ink
/ (1/In )A{Icnclglr DEM"(A) (1/In )ilnclg DEM(A)’

Combining this with lemma 1 achieves the proof. MW



3 Proof of Theorem 1

The upper bound clearly holds. To prove the lower bound, we consider a subset A of demands such
that Q(1/Ink) F(A)/DEM(A) < f. The existence of A follows from theorem 4. On the other hand,
our hypothesis implies the existence of a multicut M separating all demands in A and such that
B cap(M) < F(A). We want to find a cut U C V such that cap(U)/DEM(U) < cAP(M)/DEM(A).
Let Uy, Us, ... be the connected components of the graph (V, E — M). First, we observe that

> cap(Up) < 2cAP(M). (11)
)

This is because each edge with exactly one of its endpoints in U, belongs to M, and each edge in
M appears at most twice in the sum in the left-hand side. Similarly,

> DEM(Up) > 2DEM(A). (12)
)

This is because each commodity in A appears two times in the left-hand side, once in the connected
component of each of its endpoints. From Eqs. 11 and 12, we see that there exists a component Uy,
such that cap(Uy)/DEM(U) < cap(M)/DEM(A). Therefore,

car(Up) caP(M)

O3/l k) ST h < 03/ ) et < 001/ k) <

This achieves the proof of the lower bound on f.

The proof of theorems 2, 3, 4 shows that we can find U satisfying Eq. 1 as follows:

1. Separate the commodities into groups " and find r such that f” is minimized. Set @ «— Q7.

2. Solve the linear program I, relabel the commodities by decreasing order of their distance
function with respect to I*. Find j such that a(j)disti«(s;,;) is maximized.

3. Find M such that g caAp(M) < DEM(Z), where Z = {1,2,...,j}.

4. Output the connected component U of the graph (V,E — M) that minimizes the ratio
cap(U)/pEM(U).

The linear program I is in fact equivalent to a linear program with O(F) constraints. It can be
solved in polynomial time using the interior point method. See [3, 5] for much faster algorithms
to approximately solve linear program I. Note that using the algorithm by Garg, Vazirani and
Mihalis [2] for finding a multicut within a factor of O(Ink) from the max-flow, one can deduce
immediately from Theorem 1 an algorithm for finding a cut ratio within a factor of O(In® k) from
the maximum concurrent multicommodity flow. Such an algorithm was derived directly in [2, 7],
as was mentioned in the introduction.
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