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Abstract

We describe general multilevel Monte Carlo methods that estimate the price of an Asian
option monitored at m fixed dates. For a variety of processes that can be simulated exactly,
we prove that, for the same computational cost, our method yields an unbiased estimator
with variance lower than the variance of the standard Monte Carlo estimator by a factor
of order m. We show how to combine our approach with the Milstein scheme for processes
driven by scalar stochastic differential equations, and with the Euler scheme for processes
driven by multidimensional stochastic differential equations. Numerical experiments confirm
that our method outperforms the conventional Monte Carlo algorithm by a factor propor-
tional to m.

Keywords: finance, simulation, Asian option, multilevel Monte Carlo method, variance reduc-
tion

1 Introduction

Asian options are financial derivatives whose payoff depends on the arithmetic average of an
underlying during a specific time-period. Asian options are useful to corporations which are
exposed to average exchange rates or commodity prices over a certain period of time. Pricing
Asian options has been the subject of many studies. Under the Black-Scholes model, the price
of a continuously sampled Asian option can be expressed as an infinite series (Linetsky 2004).
Discretely monitored Asian options under Lévy processes are valued by recursive integration in
(Fusai and Meucci 2008) and via a fast Fourier transform algorithm in (Černỳ and Kyriakou
2011). Expansions for discretely sampled Asian options are derived in (Cai, Li and Shi 2013) for
diffusion models and in (Shiraya and Takahashi 2018) for diffusion processes with jumps. Bandi
and Bertsimas (2014) price Asian options via robust linear optimization. Asian options under
Markov processes can be priced via transform based methods (Cai, Song and Kou 2015, Cui, Lee
and Liu 2018). Fusai and Kyriakou (2016) give optimized bounds on Asian option prices for a
wide range of processes. Kahalé (2017) describes a convex programming method that computes
optimal model-independent bounds on Asian option prices. Corsaro, Kyriakou, Marazzina
and Marino (2019) present a transform-based algorithm that prices discretely monitored Asian
options in a general stochastic volatility framework that includes Lévy processes. (Gambaro,
Kyriakou and Fusai 2020) propose a discrete-time approach to pricing Asian options. Monte
Carlo methods can price Asian options under various models, but conventional Monte Carlo
algorithms have a high computational cost, which motivates the need to improve the efficiency
of such methods. Control variate techniques (Kemna and Vorst 1990, Dingeç and Hörmann
2012, Dingec, Sak and Hörmann 2014, Shiraya and Takahashi 2017), path adjustments methods
(see (Duan and Simonato 1998) and (Glasserman 2004, Section 4.5.1)), importance sampling
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algorithms (Glasserman, Heidelberger and Shahabuddin 1999, Genin and Tankov 2018), and
Quasi-Monte Carlo methods (e.g. (Wang and Sloan 2011)) are common variance reduction
techniques used to price Asian options. When the underlying follows a stochastic differential
equation (SDE) satisfying certain conditions, the multilevel Monte Carlo method (MLMC)
described in (Giles 2008) estimates the price of a continuously monitored Asian option with
mean square error ε2 in O((ln(ε))2ε−2) time using the Euler discretization scheme, for ε >
0. This computational cost is reduced to O(ε−2) time using the Milstein scheme for scalar
SDEs (Giles, Debrabant and Rössler 2019) and multi-dimensional SDEs (Giles, Szpruch et al.
2014) satisfying certain conditions. For a broad class of pure-jump exponential Lévy processes,
Giles and Xia (2017) estimate the price of a continuously monitored Asian option with mean
square error ε2 in O(ε−2) time via the MLMC method. Kebaier and Lelong (2018) show how to
combine the MLMC method with importance sampling. Randomized multilevel Monte Carlo
methods (RMLMC) that produce efficient and unbiased estimators of expectations of functionals
arising in SDEs are given in (Rhee and Glynn 2015, Vihola 2018). Exact simulation algorithms,
which exist for several financial models (see (Glasserman 2004, Section 3)), also yield unbiased
estimators for prices of derivatives. Recent exact simulation methods have been developed for
Heston’s stochastic volatility model (Broadie and Kaya 2006, Glasserman and Kim 2011), jump-
diffusion processes (Giesecke and Smelov 2013), the SABR model (Cai, Song and Chen 2017),
and the Ornstein–Uhlenbeck driven stochastic volatility model (Li and Wu 2019).

Consider now an Asian option with a given maturity monitored at m fixed dates. When
the underlying price process at the m dates can be simulated exactly in Θ(m) time, as in the
Black-Scholes model for instance, the time required to estimate the option price with variance
O(ε2) is Θ(mε−2) under the conventional Monte Carlo method, assuming the payoff variance
is upper and lower bounded by constants independent of m. This is because the price process
needs to be simulated Θ(ε−2) times to achieve such accuracy.

This paper describes a general multilevel framework to price an Asian option monitored at
m dates. Our approach does not make any assumptions on the nature of the stochastic process
driving the underlying. It however assumes the existence of a linear relationship between the
underlying and forward prices, that the underlying price is square-integrable, and makes certain
assumptions on the running time required to simulate the underlying on a discrete time grid
with a given precision. The latter condition is satisfied in any model where the underlying price
process can be simulated exactly at m′ fixed dates in O(m′) expected time. Using the Milstein
scheme, it is also satisfied, under certain conditions and for suitable discretization grids, by
processes driven by scalar SDEs. Our approach yields unbiased estimators with variance O(ε2)
for the Asian option price in O(m + ε−2) expected time for a variety of processes including
the Black-Scholes model, Merton’s jump-diffusion model, the Square-Root model, Kou’s double
exponential jump-diffusion model, the variance gamma and the normal inverse Gaussian model
(NIG) exponential Lévy processes and, using the Milstein scheme, processes driven by scalar
SDEs satisfying certain conditions. Our method is also applicable with the same performance
guarantees if the underlying is the average of assets that follow a multi-dimensional geometric
Brownian motion. Using the Euler scheme, our approach produces a (usually biased) estimator
with mean square error O(ε2) in O(m + (ln(ε))2ε−2) expected time for processes driven by
one-dimensional or multidimensional SDEs satisfying certain conditions. We are not aware of
any previous Monte Carlo, MLMC or RMLMC method that provably achieves such tradeoffs
between the running time and target accuracy, even under the Black-Scholes model. Our method
has the following features:

1. It is simple to implement and is based on the martingale property of forward prices. It is
provably efficient for a wide range of processes, including a class of pure-diffusion, jump-
diffusion and pure-jump exponential Lévy models. It does not make any assumptions
on the dates at which the option is monitored. It assumes that the sum of the absolute
values of the weights associated with the monitoring dates is upper-bounded by a constant
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independent of m, but makes no assumptions on the sign or order of magnitude of these
weights. Our approach thus applies to average price and average strike options.

2. It prices Asian options monitored at m dates with target accuracy O(ε) in O(m + ε−2) or
O(m+(ln(ε))2ε−2) expected time, depending on the assumptions satisfied by the diffusion
process. Note that, for general weights and dates, the time to read the input is of order m.
Previous multilevel methods have focused on continuously monitored Asian options. Giles,
Szpruch et al. (2014) and Giles, Debrabant and Rössler (2019) mention that their methods
can price Asian options monitored at m dates, but do not analyse the performance of their
algorithms in terms of m. The tradeoff between the running time and target accuracy
of our unbiased price estimator is similar to that of the randomized dimension reduction
technique for Monte Carlo simulations, that is used in (?) to reduce the variance in
Markov chains simulations.

The rest of the paper is organized as follows. Section 2 describes the modelling framework
and recalls the MLMC and RMLMC methods. Section 3 presents our algorithms for Asian
options pricing, provides examples, and shows how to combine our approach with the Euler
and Milstein schemes. Section 4 gives numerical simulations. Section 5 contains concluding
remarks. Omitted proofs are contained in the appendix. Further numerical experiments, a
detailed description of our algorithms, and a combination of our approach with a martingale-
based control variate technique are presented in the appendix. Our approach can in principle be
combined with alternative control variate, path adjustments and Quasi-Monte Carlo methods.
The appendix also shows how to adapt our method to continuously monitored Asian options.

2 Preliminaries

2.1 The modelling framework

Assume that interest rates are deterministic. Let T be a fixed maturity and m a positive integer.
Denote by F (t) the forward price of an underlying calculated at time t for maturity T . For
0 ≤ j ≤ m, let Fj := F (tj), where t0 < ∙ ∙ ∙ < tm, with t0 = 0 and tm = T . Note that Fm is
the underlying price at T . Let A :=

∑m
j=1 wjFj be a linear combination of the forward prices,

where the wj ’s are non-zero signed weights whose absolute values sum up to 1. Consider an
Asian option with payoff f(A) at maturity T , where f is a κ-Lipschitz real-valued function of
one variable. Such a payoff can model Asian options that arise in a broad range of situations.
For instance, the payoff of an average price call with strike K and maturity T on futures prices
maturing at T is equal to f(A), with f(x) = max(x − K, 0) and w1 = ∙ ∙ ∙ = wm = 1/m.
This is because forward prices are equal to futures prices when interest rates are deterministic.
Similarly, the payoff of an average strike call with maturity T on futures prices maturing at
T is equal to f(A), where f(x) = 2max(x, 0) and w1 = ∙ ∙ ∙ = wm−1 = −(m − 1)−1/2, with
wm = 1/2. In the same vein, average price and average strike options have a payoff equal to
f(A) for a suitable choice of f and of the weights wj ’s if the underlying is a stock that pays
deterministic dividends, or an index with a deterministic and continuous dividend rate, or an
exchange rate. This is due to the existence of a deterministic linear relationship between the
forward price and the underlying price (see (Hull 2014, Chap. 5)).

We assume the existence of a risk-neutral probability Q such that the sequence (Fj), 0 ≤
j ≤ m, is a martingale under Q, and the price of the option at time 0 is e−rTE(f(A)), where r is
the risk-free rate at time 0 for maturity T . The existence of Q can be shown under no-arbitrage
conditions (see (Glasserman 2004, Section 1.2.2)). All expectations in this paper are taken with
respect to Q. We assume that Fm is square-integrable. By (Revuz and Yor 1999, Corollary 1.6,
p. 53), this implies that Fj is square-integrable for 1 ≤ j ≤ m. We also assume that κ is upper-
bounded by a constant independent of m. Throughout the rest of the paper, the running time
refers to the number of arithmetic operations. Denote by N the set of non-negative integers.
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2.2 The MLMC method

The MLMC method described in (Giles 2008) efficiently estimates the expectation of a random
variable YL that is approximated with increasing accuracy by random variables Yl, 0 ≤ l ≤ L−1,
for some integer L. For 0 ≤ l ≤ L, denote by Cl the expected cost of computing Yl − Yl−1,
with Y−1 := 0. Assume that Yl, 0 ≤ l ≤ L, are square-integrable. For 0 ≤ l ≤ L, let Ȳl be the
average of nl independent copies of Yl − Yl−1, where nl is a positive integer. Assume that the
estimators Ȳ0, . . . , ȲL are independent. Following the analysis in (Giles 2008), Ȳ :=

∑L
l=0 Ȳl is

an unbiased estimator of E(YL), and

Var(Ȳ ) =
L∑

l=0

μl

nl
, (1)

where μl := Var(Yl − Yl−1) for 0 ≤ l ≤ L. Let C̄ :=
∑L

l=0 nlCl be the expected cost of comput-
ing Ȳ . It is observed in (Giles 2008) that the work-normalized variance C̄Var(Ȳ ) is minimized
when nl is proportional to

√
μl/Cl, ignoring integrality constraints. The work-normalized vari-

ance of an unbiased estimator is defined as the product of the variance and expected running
time. Glynn and Whitt (1992) show that the efficiency of an unbiased estimator is inversely
proportional to the work-normalized variance.

2.3 The RMLMC method

We now recall a RMLMC method of Rhee and Glynn (2015) that efficiently estimates the
expectation of a random variable Y that is approximated by random variables Yl, l ≥ 0. As in
Section 2.2, denote by Cl the expected cost of computing Yl − Yl−1, for l ≥ 0, with Y−1 := 0.
Assume that Y and Yl, l ≥ 0, are square-integrable. Let (pl), l ≥ 0, be a probability distribution
such that pl > 0 for l ≥ 0. Let N ∈ N be an integral random variable independent of (Yl : l ≥ 0)
such that Pr(N = l) = pl for l ≥ 0. Set Z := (YN − YN−1)/pN , with Y−1 := 0. For a square-
integrable random variable X, let ||X|| :=

√
E(X2). The following result is due to Rhee and

Glynn (2015) (see also (Vihola 2018, Theorem 2)).

Theorem 2.1 (Rhee and Glynn (2015)). Assume that ||Yl − Y || converges to 0 as l goes to
infinity. If

∑∞
l=0 ||Yl − Yl−1||2/pl is finite then Z is square-integrable, E(Z) = E(Y ), and

||Z||2 =
∞∑

l=0

||Yl − Yl−1||2

pl
.

Denote by C be the expected cost of computing Z. Propositions 2.1 and 2.2 are in the same
spirit as results previously obtained in (Giles 2008, Theorem 3.1) and (Rhee and Glynn 2015).
For completeness, we give their proof in the appendix. Proposition 2.1 shows that, under certain
conditions on Yl and Cl, the sequence (pl), l ≥ 0, can be chosen so that both ||Z|| and C are
finite.

Proposition 2.1. Assume that ||Y0||2 ≤ ν and that, for l ≥ 0,

||Yl − Y ||2 ≤ ν2−βl (2)

and Cl ≤ c2l, where c, ν and β are positive constants, with β ∈ (1, 2]. If, for l ≥ 0,

pl = (1− 2−(β+1)/2)2−(β+1)l/2, (3)

then Z is square-integrable, E(Z) = E(Y ), and

||Z||2 ≤
20ν

1− 2−(β−1)/2
. (4)
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Furthermore,
C ≤

c

1− 2−(β−1)/2
. (5)

If we relax (2), Proposition 2.2 shows how to construct a biased estimator ZI of Y , for any
positive integer I, with expected cost and variance bounded by a linear function of I, and a
bias that decreases geometrically with I.

Proposition 2.2. Assume that ||Y0||2 ≤ ν and that, for l ≥ 0,

||Yl − Y ||2 ≤ ν2−l (6)

and Cl ≤ c2l, where ν and c are positive constants. Let pl = 2−(l+1) for l ≥ 0. Fix a positive
integer I and set ZI := (YN − YN−1)1{N≤I}/pN . Then ZI is square-integrable,

(E(ZI − Y ))2 ≤ ν2−I , (7)

and
||ZI ||

2 ≤ 12ν(I + 1). (8)

Furthermore, the expected cost of computing ZI is at most cI.

More sophisticated versions of the RMLMC method can be found in (Rhee and Glynn 2015,
Vihola 2018).

3 Multilevel algorithms for Asian options

We construct multilevel approximations of A in Section 3.1 and use them in Sections 3.2 and 3.3
to build estimators of the Asian option price. Section 3.2 considers the case where forward prices
can be simulated exactly, while Section 3.3 treats the case where forward prices can be simulated
approximately. Set α := f((

∑m
j=1 wj)F0) and U := f(A)− α.

3.1 Multilevel approximations of A

Here we construct an increasing sequence of subsets of {1, . . . ,m} and show that A is approx-
imated, with increasing accuracy, by linear combinations of forward prices corresponding to
these subsets. For integers i and j with 1 ≤ i ≤ m and 0 ≤ j ≤ m, let

W (i, j) :=
j∑

k=i

wk and W ′(i, j) :=
j∑

k=i

|wk|.

By convention, W (i, j) = W ′(i, j) := 0 if j < i. Define the subsets Jl of {1, . . . ,m}, for l ≥ 0,
as follows. Set L := dlog2 me and Jl := {1, . . . ,m} for l ≥ L. For 0 ≤ l ≤ L− 1, let

Jl := {j ∈ {1, . . . ,m} : 2lW ′(1, j − 1) < b2lW ′(1, j)c}, (9)

where bxc denotes the largest integer upper-bound by x. Note that J0 = {m}. Roughly
speaking, Jl consists of the indices j where the sequence W ′(1, j) “jumps” over a multiple of
2−l. Proposition 3.1 shows that the sequence (Jl), l ≥ 0, is increasing and that the size of Jl is
at most 2l + 1.

Proposition 3.1. For l ≥ 0,
|Jl| ≤ 2l + 1 (10)

and
Jl ⊆ Jl+1. (11)
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Proposition 3.1 implies that, for 0 ≤ l ≤ L− 1,

Jl = {j ∈ Jl+1 : 2lW ′(1, j − 1) < b2lW ′(1, j)c}. (12)

For l ≥ 0, define the following trapezoidal approximation of A:

Al :=
∑

j∈Jl

wjFj +
1
2

∑

(i,k)∈Pl

W (i + 1, k − 1)(Fi + Fk), (13)

where Pl is the set of pairs of consecutive of elements of the set {0} ∪ Jl. Thus Al is obtained
from A by replacing each Fj with (Fi + Fk)/2 for each pair (i, k) ∈ Pl and each integer j with
i < j < k. By construction, Al is a deterministic linear function of (Fj), j ∈ Jl. Note that
Al = A for l ≥ L. Theorem 3.1 gives a bound on the L2-distance between A0 and W (1,m)F0

on one hand, and between Al and A on the other hand.

Theorem 3.1. ||A0 −W (1,m)F0||2 ≤ Var(Fm) and, for l ≥ 0,

||Al −A||2 ≤ 2−2lVar(Fm). (14)

Algorithm M below calculates the coefficients W (i + 1, k− 1) in (13), for 0 ≤ l ≤ L− 1 and
(i, k) ∈ Pl, in O(m) total time, using the following steps.

1. Calculate recursively W (1, j) and W ′(1, j) for 1 ≤ j ≤ m.

2. Construct by backward induction the subsets Jl, for 0 ≤ l ≤ L, using (12). This takes
O(m) total time because |Jl+1| ≤ 1 + 2l+1 for l ∈ {0, . . . , L − 1}, and so Jl can be
constructed in O(2l) time.

3. For l ∈ {0, . . . , L − 1} and each pair (i, k) ∈ Pl, calculate W (i + 1, k − 1) via the relation
W (i + 1, k − 1) = W (1, k − 1) −W (1, i). For each level l, this takes O(2l) time, and so
this step takes O(m) total time.

3.2 The exact simulation case

Assumption 1 (A1). There is a constant c independent of m such that, for any subset J of
{1, . . . ,m}, the expectation of the time required to simulate the vector (Fj), j ∈ J , is at
most c|J |.

A1 holds if the expectation of the time to simulate the forward price process on a discrete time
grid of size n is O(n). Theorem 3.2 shows how to construct an unbiased estimator of the Asian
option price under A1 using the RMLMC method. The pl’s are chosen by setting β = 2 in (3),
as suggested by the proof of the theorem.

Theorem 3.2. Suppose A1 holds. Let N ∈ N be an integral random variable independent of
(Fj : 1 ≤ j ≤ m) such that Pr(N = l) = pl for non-negative integer l, where pl := (1 −
2−3/2)2−3l/2. Set V := (UN − UN−1)/pN , where Ul := f(Al)− α for l ≥ 0 and U−1 := 0. Then
V is square-integrable,

E(f(A)) = E(V ) + α, (15)

and
Var(V ) ≤ 70κ2Var(Fm). (16)

Furthermore, the expectation of the time required to simulate V is upper-bounded by a constant
independent of m.
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Proof. As |Jl| ≤ 2l +1, the expectation of the time to simulate the vector (Fj), j ∈ Jl, is at most
c2l+1. Together with (13), this implies the existence of a constant c′ independent of m such
that, for l ≥ 0, the expectation of the time to simulate Ul−Ul−1 is at most c′2l. Since AL = A,
we have UL = U . By (13), Al is square-integrable for l ≥ 0 and, because f is κ-Lipschitz, so
are Ul and U . As |U0| ≤ κ|A0 −W (1,m)F0|, Theorem 3.1 implies that

||U0||
2 ≤ κ2Var(Fm). (17)

Similarly, as |Ul − U | ≤ κ|Al −A| for l ≥ 0, by Theorem 3.1,

||Ul − U ||2 ≤ κ22−2lVar(Fm). (18)

The conditions of Proposition 2.1 are thus met for Y = U and Yl = Ul for l ≥ 0, with
ν = κ2Var(Fm), β = 2 and c = c′. By (5), the expectation of the time required to simulate
V = Z is at most 4c′. Furthermore, V is square-integrable with E(V ) = E(U), which yields (15).
Similarly, (16) follows from (4) as 20/(1− 2−1/2) ≈ 68.28.

Theorem 3.2 shows that e−rT (V + α) is an unbiased estimator of the Asian option price
that can be simulated in constant time with variance bounded by a constant independent of
m. Simulating dε−2e independent copies of V yields an unbiased estimator of the option price
with variance O(ε2) in O(m + ε−2) expected time, including the O(m) preprocessing cost of
Algorithm M. Assuming that the variance of f(A) is lower bounded by a constant independent
of m, our estimator outperforms the conventional Monte Carlo method by a factor of order
m. More precisely, simulating m independent copies of V has the same expected cost, up to a
constant, as a single iteration of the standard Monte Carlo algorithm, but produces an unbiased
estimator of the Asian option price with O(1/m) variance. Theorem 3.3 shows how to construct
another unbiased estimator of the Asian option price under A1 using the MLMC method.

Theorem 3.3. Suppose A1 holds. Define Ul, l ≥ −1, as in Theorem 3.2 and, for 0 ≤ l ≤ L,
let μl := Var(Ul − Ul−1) and

nl :=
⌊
1 +

m
√

μl/|Jl|
∑L

l′=0

√
μl′ |Jl′ |

⌋
. (19)

For 0 ≤ l ≤ L, let Ūl be the average of nl independent copies of Ul − Ul−1. Assume that the
estimators Ū0, . . . , ŪL are independent. Set Ū :=

∑L
l=0 Ūl. Then

E(f(A)) = E(Ū) + α, (20)

and
mVar(Ū) ≤ 240κ2Var(Fm). (21)

Furthermore, the expectation of the time required to simulate Ū is O(m).

Assuming the variances μl, 0 ≤ l ≤ L, are known, Theorem 3.3 shows that e−rT (Ū +α) is an
unbiased estimator of the Asian option price that can be simulated in O(m) time with variance
O(1/m). Once again, assuming that the variance of f(A) is lower bounded by a constant
independent of m, this estimator outperforms the conventional Monte Carlo estimator by a
factor of order m. Simulating dε−2/me independent copies of Ū yields an unbiased estimator
of the option price with variance O(ε2) in O(m + ε−2) expected time. The variances μl can be
estimated by Monte Carlo simulation. Below are examples where A1 holds.
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3.2.1 The Black-Scholes model

In this model, F (t) satisfies the SDE

dF (t) = σF (t)dW (22)

on [0, T ], where σ is a constant volatility and W is a one-dimensional Brownian motion under
Q. Given J ⊆ {1, . . . ,m}, let n = |J |, and let 0 = τ0 < τ1 < ∙ ∙ ∙ < τn be the elements of the
time grid G = {0} ∪ {tj : j ∈ J}, sorted in increasing order. Let X1, . . . , Xn be independent
standard Gaussian random variables. We simulate the forward prices on G in O(n) time using
the following recursive procedure (Glasserman 2004, Section 3.2.1):

F (τk) = F (τk−1) exp(−σ2 τk − τk−1

2
+ σ

√
τk − τk−1Xk),

1 ≤ k ≤ n. Then, for j ∈ J , we set Fj = F (τk), where k is the index such that τk = tj . Thus
A1 holds for the Black-Scholes model. Furthermore, it is well-known that the forward price is
square-integrable at any fixed date in this model.

3.2.2 Merton’s jump-diffusion model

Here, the risk-neutral process for the forward price satisfies the jump-diffusion SDE (see (Merton
1976)):

dF (t)
F (t−)

= −λμdt + σdW (t) + dJ(t) (23)

on [0, T ], where W is a Brownian motion, J(t) :=
∑N(t)

j=1 (Yj − 1), and N(t) is a Poisson process
with rate λ. If a jump occurs at time τj , then S(τj+) = S(τj−)Yj , where ln(Yj) is a Gaussian
random variable with mean β and standard deviation γ. The model parameters satisfy the
equation: μ + 1 = exp(β + γ2/2). We assume that W , N and the Yj ’s are independent. An
algorithm that simulates the forward price process on a discrete time grid of size n in O(n)
expected time is given in (Glasserman 2004, Section 3.5.1). Thus A1 holds for Merton’s jump-
diffusion model. A classical calculation based on (Glasserman 2004, Section 3.5.1) shows that
the forward price is square-integrable at any fixed date in this model.

3.2.3 The Square-Root diffusion model

Here we assume that F (t) satisfies the following SDE:

dF (t) = σ
√

F (t)dW (t)

on [0, T ], where W is a Brownian motion under Q, and σ > 0. The Square-Root diffusion
model, introduced in (Cox and Ross 1976), is a special case of the CEV model. The appendix
describes an algorithm that simulates the forward price on a discrete time grid of size n in O(n)
expected time and shows that Fm is square-integrable. Thus A1 holds for the Square-Root
diffusion model.

It is well-known that the standard Euler scheme is not defined for Square-Root diffusions
because it may produce negative forward prices. The related Cox-Ingersoll-Ross process has
an implicit Euler scheme with a strong convergence of order 1 (see (Alfonsi 2015, Section 3.2))
under certain assumptions on the model parameters, but we are not aware of discretization
schemes with positive strong order of convergence for Square-Root diffusions. Thus, previous
MLMC methods based on the Euler or Milstein schemes are inapplicable to this process.
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3.2.4 Kou’s double exponential jump-diffusion model

The risk-neutral process for the forward price in this model (see (Kou 2002)) is given by (23)

on [0, T ], where W is a Brownian motion, J(t) :=
∑N(t)

j=1 (Yj − 1), and N(t) is a Poisson process
with rate λ. The Yj ’s are i.i.d. positive random variables such that X := ln(Y1) has density
function

fX(x) = pη1e
−η1x1{x≥0} + (1− p)η2e

η2x1{x<0},

where η1 > 1, η2 > 0, 0 ≤ p ≤ 1. We assume that W , N and the Yj ’s are independent. The
martingale condition implies that

μ + 1 = E(Y1) = p
η1

η1 − 1
+ (1− p)

η2

η2 + 1
.

An algorithm that simulates the forward price process on a discrete time grid of size n in O(n)
expected time is given in (Glasserman 2004, Section 3.5.1). If η1 > 2, a simple calculation shows
that the Yj ’s are square integrable which, by (Glasserman 2004, Eq. 3.81), guarantees that the
second moment of F (T ) is finite.

3.2.5 The variance gamma model

Here we assume that F (t) = F0 exp(ωt + X(t)), where X(t) = X(t; σ, ν, θ) is a variance gamma
process under Q (Madan, Carr and Chang 1998) with parameters σ, ν > 0, and θ, where
θν + σ2ν/2 < 1 and

ω =
1
ν

ln(1− θν − σ2ν/2).

The process X(t) starts at 0, has independent increments, and can be simulated recursively at
dates τ0 = 0 < τ1 < ∙ ∙ ∙ < τn as follows (Glasserman 2004, Section 3.5.2):

X(τi+1) := X(τi) + θY + σ
√

Y Z, (24)

where Z ∼ N(0, 1) (i.e. Z has the standard normal distribution), and Y is independent of Z
and has distribution Gamma((τi+1 − τi)/ν, ν). As a gamma random variable can be simulated
in unit expected time (Devroye 1986), A1 holds for the variance gamma model. It follows
from (24) that

E(exp(2X(T ))) = E(exp(2(θ + σ2)Y )),

where Y ∼ Gamma(T/ν, ν). By a standard calculation, this implies that F (T ) is square inte-
grable if 2(θ + σ2)ν < 1.

3.2.6 The NIG model

The inverse Gaussian distribution with parameters δ, γ > 0 has density

fIG(x) :=
δeδγ

√
2π

x−3/2 exp(−
1
2
(δ2x−1 + γ2x)), x > 0.

The NIG model assumes that F (t) = F0 exp(ωt+X(t)), where X(t) is a normal inverse Gaussian
process under Q (Glasserman 2004, Section 3.5.2) with parameters δ, γ > 0 and β, where
2β + 1 < γ2 and

ω := −δ(γ −
√

γ2 − 2β − 1). (25)

The process X(t) starts at 0, has independent increments, and can be simulated recursively at
dates τ0 = 0 < τ1 < ∙ ∙ ∙ < τn as follows (Glasserman 2004, Section 3.5.2):

X(τi+1) := X(τi) + βY +
√

Y Z, Z ∼ N(0, 1),

9



where Y is independent of Z and has an inverse Gaussian distribution with parameters δ(τi+1−
τi) and γ. Hence

E(exp(X(T ))) = E(exp((β + 1/2)Y )),

where Y has an inverse Gaussian distribution with parameters δT and γ. By (Cont and Tankov
2004, Table 4.4), for u < γ2/2,

E(euY ) = exp(δT (γ −
√

γ2 − 2u)),

and so (25) guarantees that (F (t)), 0 ≤ t ≤ T , is a martingale. A similar calculation shows that
F (T ) is square integrable if 4(β + 1) < γ2. The inverse Gaussian distribution can be simulated
in unit expected time (Glasserman 2004, Section 3.5.2), and so A1 holds for the NIG model.

3.2.7 Multi-dimensional geometric Brownian motion

A1 also holds if the underlying is the average of assets that follow a multi-dimensional geometric
Brownian motion. An algorithm that jointly simulates such assets is given in (Glasserman 2004,
Section 3.2.3).

3.3 The approximate simulation case

For J ⊆ {1, . . . ,m}, let RJ denote the set of vectors of dimension |J |, indexed by the elements
of J .

Assumption 2 (A2). There are constants c1, c2 and β ∈ [1, 2] such that, for l ≥ 0 and
J ⊆ {1, . . . ,m}, there is a random vector F̂ = F̂ (J, l) ∈ RJ such that ||F̂j−Fj ||2 ≤ c22−βl

for any j ∈ J . For l ≥ 1 and J ′ ⊆ J ⊆ {1, . . . ,m}, the expected time required to simulate
the vector (F̂ (J ′, l − 1), F̂ (J, l)) is at most c1(|J |+ 2l).

The first condition in A2 says that, for l ≥ 0 and J ⊆ {1, . . . ,m}, the forward price Fj is ap-
proximated by F̂j with “mean square error” at most c22−βl for any j ∈ J . The second condition
gives an upper bound on the expected time to jointly simulate F̂ (J ′, l − 1) and F̂ (J, l). It is
shown in Sections 3.3.2 and 3.3.3 that, under certain conditions and using suitable discretization
grids, A2 holds when the Euler or Milstein schemes are used to approximately simulate forward
prices.

Assume now that A2 holds. For l ≥ 0, let F̂ l := F̂ (Jl, l) and

Âl :=
∑

j∈Jl

wjF̂
l
j +

1
2

∑

(i,k)∈Pl

W (i + 1, k − 1)(F̂ l
i + F̂ l

k). (26)

Thus Âl is obtained from A by replacing each Fj with F̂ l
j if j ∈ Jl and by (F̂ l

i + F̂ l
k)/2 if

(i, k) ∈ Pl and i < j < k. Note that Âl is a deterministic linear function of the vector F̂ l.
Proposition 3.2 gives a bound on the L2-distance between Â0 and W (1,m)F0 on one hand, and
between Âl and A on the other hand.

Proposition 3.2. If A2 holds then ||Â0−W (1,m)F0||2 ≤ c3 and ||Âl−A||2 ≤ c32−βl for l ≥ 0,
where c3 = 2(c2 + Var(Fm)).

Theorem 3.4 shows how to construct an unbiased estimator of the Asian option price under
A2, with β > 1. The case β = 1 will be considered in Theorem 3.5.

Theorem 3.4. Suppose A2 holds with β > 1. Let N ∈ N be an integral random variable
independent of (F̂ (Jl, l) : l ≥ 0) such that Pr(N = l) = pl for non-negative integer l, where pl

10



is given by (3). Let Ûl := f(Âl)− α for l ≥ 0, and let V̂ := (ÛN − ÛN−1)/pN , where Û−1 := 0.
Then V̂ is square-integrable and

E(f(A)) = E(V̂ ) + α. (27)

Furthermore, Var(V̂ ) and the expectation of the time required to simulate V̂ are upper-bounded
by constants independent of m.

As per the discussion following Theorem 3.2, Theorem 3.4 shows that e−rT (V̂ + α) is an
unbiased estimator of the Asian option price that can be simulated in constant time and with
variance bounded by a constant independent of m. Independent dε−2e runs of this estimator
yield an unbiased estimator of the Asian option price with variance O(ε2) in O(m+ε−2) expected
time.

Theorem 3.5 constructs an estimator of the option price with an arbitrarily small bias when
A2 holds with β = 1.

Theorem 3.5. Suppose A2 holds with β = 1. Fix ε ∈ (0, 1/2) and set I := d2 log2(1/ε)e. Let
N ∈ N be an integral random variable independent of (F̂ (Jl, l) : l ≥ 0) such that Pr(N = l) =
2−(l+1) for l ∈ N. Let Ûl := f(Âl)− α for l ≥ 0, and let

V̂ :=
ÛN − ÛN−1

pN
1{N≤I},

where Û−1 := 0. Then V̂ is square-integrable and

(E(V̂ ) + α− E(f(A)))2 ≤ c3κ
2ε2, (28)

where c3 is defined as in Proposition 3.2. Furthermore, there are constants c4 and c5 independent
of m and of ε such that Var(V̂ ) ≤ c4 ln(1/ε) and the expectation of the time required to simulate
V̂ is upper-bounded by c5 ln(1/ε).

Under the assumptions of Theorem 3.5, the Asian option price can be calculated with O(ε2)
mean square error in O(m+ ε−2 ln2(1/ε)) expected time as follows. We simulate n independent
copies of V̂ , where n = dln(1/ε)ε−2e, and take their average V̂n. Since Var(V̂n) = Var(V̂ )/n, we
have Var(V̂n) ≤ c4ε

2. Furthermore, as E(V̂n) = E(V̂ ), it follows from (28) that

(E(V̂n) + α− E(f(A)))2 ≤ c3κ
2ε2.

Since the mean square error is the sum of the variance and squared bias, we conclude that

||V̂n + α− E(f(A))||2 ≤ (c4 + c3κ
2)ε2.

Thus e−rT (V̄ + α) is an estimate of the Asian option price e−rTE(f(A)) with mean square
error O(ε2). The total expected time to simulate V̂n is O(m + ln2(ε)ε−2), including the cost of
Algorithm M.

The rest of this section shows that A2 holds when the forward price follows a continuous
diffusion process satisfying certain conditions. For a vector or a matrix z, denote by |z| the
square root of the sum of the squared entries of z.

3.3.1 The Euler scheme

We recall here the Euler scheme applied to SDEs. Consider a d-dimensional process (H(t)),
0 ≤ t ≤ T , which is a strong solution to the SDE

dH(t) = a(H(t), t) dt + b(H(t), t) dW, H(0) = H0, (29)

11



where a : Rd × R+ → Rd is a d-dimensional vector function, b : Rd × R+ → Rd×d′ is a d × d′

matrix function, and W is a d′-dimensional Brownian motion. Consider a deterministic time-
grid G = {τ0, τ1, . . . , τn}, with 0 = τ0 < τ1 < ∙ ∙ ∙ < τn = T , and let δ := max0≤k≤n−1(τk+1− τk).
The Euler scheme can be used to approximate the discrete process (H(t)), t ∈ G, by the random
sequence H̃ = H̃(G) defined recursively as follows: H̃0 := H0 and, for 0 ≤ k ≤ n− 1,

H̃k+1 := H̃k + a(H̃k, τk)(τk+1 − τk) + b(H̃k, τk)(W (τk+1)−W (τk)). (30)

Suppose that

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| ≤ K1|x− y| (Lipschitz condition), (31)

|a(x, t)|+ |b(x, t)| ≤ K2(1 + |x|) (Linear Growth condition), (32)

and
|a(x, t)− a(x, s)|+ |b(x, t)− b(x, s)| ≤ K3(1 + |x|)|t− s|1/2 (33)

for all s, t ∈ [0, T ] and x, y ∈ Rd, where K1, K2 and K3 are constants. Then it follows from the
proof of (Kloeden and Platen 1992, Theorem 10.2.2) that

E( max
0≤k≤n

|H̃k −H(τk)|
2) ≤ K ′

1δ, (34)

where K ′
1 is a constant.

3.3.2 The Euler scheme and Assumption A2

Assume that F (t) is the first component of a d-dimensional process (H(t)), 0 ≤ t ≤ T , that is
a strong solution to the SDE (29), and that W is a d′-dimensional Brownian motion under Q.
Suppose that the conditions (31), (32) and (33) hold and that, for (x, t) ∈ Rd × [0, T ], a(x, t)
and b(x, t) can be calculated in constant time. For J ⊆ {1, . . . ,m} and l ≥ 0, let

G(J, l) := {tj : j ∈ J} ∪ {i2−lT : 0 ≤ i ≤ 2l}.

Let 0 = τ0 < τ1 < ∙ ∙ ∙ < τn = T be the elements of G(J, l) sorted in increasing order. Note that
n ≤ |J |+ 2l and that the maximum distance between two consecutive elements of G(J, l) is at
most 2−lT . Construct H̃ = H̃(G(J, l)) via (30), and define F̂ = F̂ (J, l) ∈ RJ as follows. For
j ∈ J , let F̂j be the first component of H̃k, where k is the index such that τk = tj . In other
words, F̂ is the vector of first components of the “restriction” of H̃ to the dates corresponding
to J .

It follows from (34) that

E( max
0≤k≤n

|H̃k −H(τk)|
2) ≤ K ′

12
−lT,

where K ′
1 is a constant, and so ||F̂j − Fj ||2 ≤ K ′

12
−lT for j ∈ J . Furthermore, for l ≥ 1 and

J ′ ⊆ J ⊆ {1, . . . ,m}, the grid G(J ′, l−1) is contained in G(J, l). The vector (F̂ (J ′, l−1), F̂ (J, l))
can thus be simulated in at most c1(|J | + 2l) time, where c1 is a constant independent of m,
by first simulating W on the elements of G(J, l) and then using the same W to calculate
recursively H̃(G(J, l)) and H̃(G(J ′, l − 1)) via (30). Thus A2 holds with β = 1 for the Euler
scheme described above.

12



3.3.3 The one-dimensional Milstein scheme

Assume now that F (t) is a strong solution to the SDE

dF (t) = b(F (t), t) dW,

where b ∈ C3,1(R×R+) is a real-valued function and W is a one-dimensional Brownian motion
under Q. Suppose that, for (x, t) ∈ R × [0, T ], b(x, t) can be calculated in constant time.
For J ⊆ {1, . . . ,m} and l ≥ 0, define recursively the sequence F ∗ = F ∗(J, l) via the Milstein
scheme (Kloeden and Platen 1992, p. 345) as follows: set F ∗

0 := F0 and

F ∗
k+1 := F ∗

k + b(F ∗
k , τk)(ΔW ) +

1
2
b(F ∗

k , τk)
∂b

∂x
(F ∗

k , τk)((ΔW )2 − (τk+1 − τk)), (35)

0 ≤ k ≤ n − 1, where ΔW := W (τk+1) −W (τk) and τ0, . . . , τn are defined as in Section 3.3.2.
Kloeden and Platen (1992, Theorem 10.6.3) show that, under certain conditions on b,

E( max
0≤k≤n

(F ∗
k − F (τk))

2) ≤ K ′
2δ

2,

where K ′
2 is a constant, and δ := max0≤k≤n−1(τk+1−τk). These conditions include the existence

of the derivatives ∂ib/∂xi, 1 ≤ i ≤ 3, ∂b/∂t, and ∂2b/∂x∂t. For j ∈ J , set F̂j := F ∗
k , where k

is the index such that τk = tj . As for the Euler scheme, the vector (F̂ (J ′, l − 1), F̂ (J, l)) can
be simulated in at most c1(|J | + 2l) time, where c1 is a constant independent of m, by first
simulating W on the elements of G(J, l) and then using the same W to calculate recursively
F ∗(J, l) and F ∗(J ′, l− 1) via (35). Thus A2 holds with β = 2 for the Milstein scheme described
above.

4 Numerical experiments

The simulation experiments were performed on a desktop PC with an Intel Pentium 2.90 GHz
processor and 4 GB of RAM. The codes were written in the C++ programming language. Our
experiments assume that interest rates are constant and equal to r. We have implemented the
RMLMC method of Theorem 3.2, and the MLMC method of Theorem 3.3, but replaced m with
30m in (19) in order to mitigate the rounding effect and achieve greater efficiency. The variances
μl were estimated by Monte Carlo simulation using 103 independent runs. The RMLMC method
based on the Milstein scheme (RMLMC-Milstein) was implemented for the Black-Scholes model
as described in Theorem 3.4, with β = 2, without solving explicitly (22). In Tables 1 through 6,
“Price” is the estimated Asian option price obtained via n independent replications, and “Std”
is the estimated price standard error. Note that the variance of the estimated price is equal to
the variance of a single run divided by n. The variable “Cost” refers to the total number of
simulated underlying prices throughout the n replications. Thus, Cost × Std2 is an estimate of
the work-normalized variance. As per the discussions following Theorems 3.2, 3.3 and 3.4, n
is set to a constant independent of m for the RMLMC and RMLMC-Milstein algorithms, and
is inversely proportional to m for the MLMC algorithm. The constants were chosen so that
the variable “Cost” has the same order of magnitude for the studied algorithms. The variable
“Time” refers to the total running time in seconds of the n replications and includes, for the
MLMC algorithm, the time needed to estimate the μl’s. As the variance of a single run of the
standard Monte Carlo estimator is e−2rT Var(f(A)), we measure the performance of a method
through the following factors, in line with (Glynn and Whitt 1992):

Effcost :=
me−2rT Var(f(A))

Cost× Std2 ,
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Table 1: Pricing at the money average price calls in the Black-Scholes model
m Method n Price Std Cost Cost × Std2 Time Effcost Efftime
125 RMLMC 1 × 108 0.3523 1.5 × 10−4 2.10 × 108 4.5 24 12 8

MLMC 8 × 104 0.3523 1.5 × 10−4 2.11 × 108 4.5 21 12 10

RMLMC-Mil. 1 × 108 0.3522 1.4 × 10−4 3.30 × 108 6.4 36 8 6

250 RMLMC 1 × 108 0.3512 1.5 × 10−4 2.13 × 108 4.7 24 24 17

MLMC 4 × 104 0.3508 1.5 × 10−4 2.18 × 108 4.7 22 23 19

RMLMC-Mil. 1 × 108 0.3511 1.4 × 10−4 3.33 × 108 6.6 36 17 13

500 RMLMC 1 × 108 0.3506 1.5 × 10−4 2.15 × 108 4.8 25 45 31

MLMC 2 × 104 0.3504 1.5 × 10−4 2.18 × 108 4.9 22 44 35

RMLMC-Mil. 1 × 108 0.3506 1.4 × 10−4 3.35 × 108 6.8 36 32 23

Table 2: Pricing average strike calls in the Black-Scholes model
m Method n Price Std Cost Cost × Std2 Time Effcost Efftime
m = 125 RMLMC 1 × 108 0.3632 2.0 × 10−4 1.42 × 108 5.4 18 17 11

MLMC 8 × 104 0.3632 1.4 × 10−4 2.08 × 108 3.9 21 23 19

RMLMC-Mil. 1 × 108 0.3631 2.0 × 10−4 2.62 × 108 10 30 9 6

m = 250 RMLMC 1 × 108 0.3627 2.0 × 10−4 1.42 × 108 5.6 18 34 21

MLMC 4 × 104 0.3628 1.4 × 10−4 2.03 × 108 4 20 47 38

RMLMC-Mil. 1 × 108 0.3628 2.0 × 10−4 2.62 × 108 10 30 18 13

m = 500 RMLMC 1 × 108 0.3626 2.0 × 10−4 1.42 × 108 5.7 18 61 38

MLMC 2 × 104 0.3626 1.4 × 10−4 2.08 × 108 4.2 21 83 66

RMLMC-Mil. 1 × 108 0.3626 2.0 × 10−4 2.62 × 108 11 30 32 23

and

Efftime :=
Time(MC) e−2rT Var(f(A))

Time× Std2 ,

where “Time(MC)” is the running in seconds of a single run of the standard Monte Carlo
method. Here Var(f(A)) is estimated via 105 independent samples of A. The payoff of an
average price call with strike K is max(m−1(

∑m
i=1 Si) − K, 0), while the payoff of an average

strike call is max(Sm− (m− 1)−1(
∑m−1

i=1 Si), 0), where Si is the underlying price at ti := iT/m.

4.1 The Black-Scholes model

In our experiments, the underlying is a stock S with no dividends, and the model parameters
are S0 = 2, σ = 50%, r = 5%, and T = 2. These values are taken from (Linetsky 2004).
Table 1 gives our results for average price calls with K = 2 and selected values of m. For
the RMLMC and RMLMC-Milstein algorithms, the cost of n = 108 independent replications,
and the standard error of the estimated price, are roughly independent of m. These results
are consistent with Theorems 3.2 and 3.4. Likewise, for the MLMC algorithm, the cost of
n = 107/m independent replications and the standard error of the estimated price are roughly
independent of m. This is consistent with Theorem 3.3, which implies that the expected cost
(resp. variance) of a single run of this algorithm is O(m) (resp. O(m−1)). For the RMLMC,
MLMC and RMLMC-Milstein algorithms, Effcost and Efftime are roughly proportional to m.
Thus, these algorithms outperform the standard Monte Carlo algorithm by a factor of order m.
Table 2 reports similar results for average strike calls. In Table 1, the RMLMC and MLMC
methods have a similar performance, as indicated by Effcost and Efftime. In Table 2, the MLMC
method slightly outperforms the RMLMC method. This can be explained by observing that the
frequencies nl in Theorem 3.3 are near-optimal, which is not always the case for the probabilities
pl in Theorem 3.2. In both tables, the RMLMC method outperforms the RMLMC-Milstein
algorithm. In the Black-Scholes model, the RMLMC-Milstein algorithm has no advantages over
RMLMC because the forward price process can be simulated exactly. Table 3 reports prices of
Asian options produced by the RMLMC algorithm with a very large value of m. The cost and
standard error of the estimated price in Table 3 are essentially the same as the corresponding
values in Tables 1 and 2. The price of the average price call in Table 3 is very close to the price
of the continuously monitored average price call given in (Linetsky 2004), which is 0 .350095.
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Table 3: Randomized multilevel Monte Carlo pricing of Asian calls in the Black-Scholes model.
The average price call at the money.

m n Price Std Cost Cost × Std2 Time

Average price 107 108 0.3501 1.4 × 10−4 2.21 × 108 5.1 26
Average strike 107 108 0.3625 2.1 × 10−4 1.42 × 108 6.0 19

4.2 Merton’s jump-diffusion model

In our experiments, the underlying is an index with constant dividend yield q. The model
parameter values used are S0 = 2, σ = 17.65%, r = 5.59%, q = 1.14%, λ = 8.90%, β =
−88.98%, and γ = 45.05%. Except for the spot price, these values are taken from (Andersen
and Andreasen 2000), where they were obtained by fitting option prices with maturities ranging
from one month to ten years. We set T = 2. Table 4 gives prices of average price calls using the
RMLMC and MLMC algorithms. Here again, the cost and the standard error of the estimated
price of 108 (resp. 107/m) independent replications of the RMLMC (resp. MLMC) algorithm
are roughly independent of m. For both algorithms, Effcost and Efftime are roughly proportional
to m. The RMLMC and MLMC methods have a similar performance.

Table 4: Pricing at the money average price calls in Merton’s jump-diffusion model
m Method n Price Std Cost Cost × Std2 Time Effcost Efftime

m = 125 RMLMC 1 × 108 0.19306 5.0 × 10−5 2.10 × 108 0.53 63 13 12

MLMC 8 × 104 0.19303 5.0 × 10−5 2.16 × 108 0.53 60 13 13

m = 250 RMLMC 1 × 108 0.19242 5.1 × 10−5 2.13 × 108 0.55 63 26 23

MLMC 4 × 104 0.19244 5.0 × 10−5 2.22 × 108 0.56 62 25 24

m = 500 RMLMC 1 × 108 0.19208 5.1 × 10−5 2.15 × 108 0.56 65 50 44

MLMC 2 × 104 0.19208 5.0 × 10−5 2.27 × 108 0.57 63 50 47

4.3 The Square-Root diffusion model

The model parameter values in our experiments are S0 = 2, r = 5%, σ = 0.4, and T = 2.
Table 5 gives prices of average price calls using the RMLMC and MLMC algorithms. Once
again, the cost and the standard error of the estimated price of the n independent replications
of the RMLMC and MLMC algorithms are roughly independent of m. The efficiency of both
algorithms is roughly proportional to m. The RMLMC and MLMC methods have a similar
performance.

Table 5: Pricing at the money average price calls in the Square-Root diffusion model
m Method n Price Std Cost Cost × Std2 Time Effcost Efftime

m = 125 RMLMC 1 × 108 0.21832 6.3 × 10−5 2.10 × 108 0.82 158 13 13

MLMC 8 × 104 0.21842 6.2 × 10−5 2.15 × 108 0.82 157 13 13

m = 250 RMLMC 1 × 108 0.21768 6.3 × 10−5 2.13 × 108 0.85 160 26 26

MLMC 4 × 104 0.21772 6.2 × 10−5 2.22 × 108 0.85 164 26 26

m = 500 RMLMC 1 × 108 0.21724 6.4 × 10−5 2.15 × 108 0.87 162 50 50

MLMC 2 × 104 0.21729 6.4 × 10−5 2.21 × 108 0.90 162 49 49

4.4 The variance gamma model

The model parameter values in our experiments are S0 = 2, r = 5%, σ = 0.1213, ν = 0.1686, θ =
−0.1436, and T = 2. The values of ν, σ and θ are taken from (Madan, Carr and Chang 1998).
The simulation results, reported in Table 6, are similar in nature to those in Tables 1, 4 and 5.
In particular, the efficiency of the RMLMC and MLMC algorithms is roughly proportional to
m.
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Table 6: Pricing at the money average price calls in the variance gamma model
m Method n Price Std Cost Cost × Std2 Time Effcost Efftime

m = 125 RMLMC 1 × 108 0.13832 3.1 × 10−5 2.10 × 108 0.20 69 14 13

MLMC 8 × 104 0.13825 3.1 × 10−5 2.21 × 108 0.21 67 14 13

m = 250 RMLMC 1 × 108 0.13782 3.1 × 10−5 2.13 × 108 0.21 64 27 21

MLMC 4 × 104 0.13771 3.1 × 10−5 2.21 × 108 0.22 61 26 22

m = 500 RMLMC 1 × 108 0.13757 3.2 × 10−5 2.15 × 108 0.22 68 53 42

MLMC 2 × 104 0.13753 3.1 × 10−5 2.21 × 108 0.22 67 52 43

5 Conclusion

We have described a general MLMC framework to estimate the price of an Asian option mon-
itored at m dates. We assume the existence of a linear relation between the underlying and
forward prices, and that the underlying price is square-integrable at maturity T . Our approach
yields unbiased estimators with variance O(ε2) in O(m + ε−2) expected time for a variety of
processes that can be simulated exactly and, via the Milstein scheme, processes driven by scalar
SDEs satisfying certain conditions. Using the Euler scheme, our approach estimates the Asian
option price with mean square error O(ε2) in O(m + (ln(ε))2ε−2) expected time for processes
driven by multidimensional SDEs satisfying certain conditions. Numerical experiments confirm
that our approach outperforms the conventional Monte Carlo method by a factor proportional
to m.

A direction for future research is to extend our approach to models beyond those studied
in this paper. Simulating the Heston and SABR models, whose dynamics violate the Lips-
chitz condition (31), with the standard Euler and Milstein schemes can lead to erratic results
(Glasserman and Kim 2011, Cai, Song and Chen 2017). Combining our techniques with provably
efficient simulation methods for these models is left for future work.
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A Proof of Proposition 2.1

As (x + x′)2 ≤ 2(x2 + x′2) for any real numbers x and x′, if X and X ′ are square-integrable
random variables,

||X + X ′||2 ≤ 2(||X||2 + ||X ′||2). (36)

For l ≥ 1, by applying (36) with X = Yl − Y and X ′ = Yl−1 − Y , it follows that

||Yl − Yl−1||
2 ≤ 2(||Yl − Y ||2 + ||Yl−1 − Y ||2). (37)

Since ||Yl−1 − Y ||2 ≤ 4ν2−βl by (2), it follows that from (37) that

||Yl − Yl−1||
2 ≤ 10ν2−βl. (38)

As ||Y0||2 ≤ ν, (38) holds also for l = 0. Thus, as pl ≥ 2−1−(β+1)l/2,

∞∑

l=0

||Yl − Yl−1||2

pl
≤ 20ν

∞∑

l=0

2−(β−1)l/2

=
20ν

1− 2−(β−1)/2
.
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By Theorem 2.1, we conclude that Z is square-integrable with E(Z) = E(Y ), and that (4) holds.
We now prove (5). As observed in (Rhee and Glynn 2015), C =

∑∞
l=0 plCl. Since pl ≤

2−(β+1)l/2,

C ≤ c
∞∑

l=0

2−(β−1)l/2,

which concludes the proof.

B Proof of Proposition 2.2

We apply Theorem 2.1 to the sequence (Ymin(l,I) : l ≥ 0) and YI . Thus Z = ZI , and so ZI is
square-integrable, E(ZI) = E(YI), and

||ZI ||
2 =

I∑

l=0

||Yl − Yl−1||2

pl
.

Hence

(E(ZI − Y ))2 = (E(YI − Y ))2

≤ ||YI − Y ||2,

which yields (7). On the other hand, for l ≥ 1, as ||Yl−1 − Y ||2 ≤ 2ν2−l by (6), it follows
from (37) that

||Yl − Yl−1||
2 ≤ 6ν2−l. (39)

Since ||Y0||2 ≤ ν, (39) also holds for l = 0. Hence,

I∑

l=0

||Yl − Yl−1||2

pl
≤ 12ν(I + 1),

which implies (8). Finally, the expected cost of computing ZI is
∑I

l=0 plCl, which is upper-
bounded by cI since plCl ≤ c/2.

C Proof of Proposition 3.1

We first show (10). As this equation clearly holds for l ≥ L, we assume that 0 ≤ l ≤ L− 1. Let
j and j′ be two elements of Jl, with j < j′. As j ≤ j′ − 1,

b2lW ′(1, j)c ≤ b2lW ′(1, j′ − 1)c

≤ 2lW ′(1, j′ − 1)

< b2lW ′(1, j′)c,

where the last equation follows from (9). Thus the map j 7→ b2lW ′(1, j)c from Jl to {0, . . . , 2l}
is strictly increasing. This implies (10).

We now show (11). As this relation is obvious when l ≥ L− 1, assume that 0 ≤ l ≤ L− 2.
Since 2bxc ≤ b2xc for x ∈ R, for any an element j of Jl,

2l+1W ′(1, j − 1) < 2b2lW ′(1, j)c ≤ b2l+1W ′(1, j)c,

where the first equation follows from (9). Thus, j ∈ Jl+1. This implies (11).
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D Proof of Theorem 3.1

Proposition D.1 proves standard properties of square-integrable martingales.

Proposition D.1. For 0 ≤ i ≤ j ≤ k ≤ m,

E(Fi(Fk − Fj)) = 0, (40)

and
||Fi|| ≤ ||Fj ||. (41)

Moreover,
||Fj − Fi||

2 ≤ ||Fk||
2 − ||Fi||

2. (42)

Proof. Let F = (Fi), 0 ≤ i ≤ m, be the natural filtration of the random process (Fi), 0 ≤ i ≤ m.
By the tower law,

E(Fi(Fk − Fj)) = E(E(Fi(Fk − Fj)|Fj))

= E(FiE(Fk − Fj |Fj))

= 0.

The last equation follows from the fact that (Fi), 0 ≤ i ≤ m, is a martingale with respect to F .
This implies (40). In particular, E(Fi(Fj − Fi)) = 0. As Fj = (Fj − Fi) + Fi,

||Fj ||
2 = ||Fj − Fi||

2 + ||Fi||
2,

which proves (41). The inequality ||Fj || ≤ ||Fk|| then implies (42).

We next prove the following proposition.

Proposition D.2. For l ≥ 0, if (i, k) ∈ Pl then W ′(i + 1, k − 1) ≤ 2−l.

Proof. The desired inequality clearly holds if k = i+1. Assume that k > i+1. Thus l ≤ L− 1.
For any integer j in [i + 1, k − 1], since j /∈ Jl, we have 2lW ′(1, j − 1) ≥ b2lW ′(1, j)c, and so

b2lW ′(1, j − 1)c = b2lW ′(1, j)c. (43)

Hence

2lW ′(1, k − 1)− 1 ≤ b2lW ′(1, k − 1)c

= b2lW ′(1, i)c

≤ 2lW ′(1, i).

The second equation follows from (43). As W ′(i + 1, k − 1) = W ′(1, k − 1) − W ′(1, i), this
completes the proof.

We now prove Theorem 3.1. By (13) and the relation J0 = {m},

A0 = wmFm +
1
2
W (1,m− 1)(F0 + Fm).

As W (1,m) = W (1,m− 1) + wm, it follows that

A0 −W (1,m)F0 = (
1
2
W (1,m− 1) + wm)(Fm − F0),

and so ||A0 −W (1,m)F0|| ≤ ||Fm − F0||. As E(Fm) = F0, this implies the desired bound on
||A0 −W (1,m)F0||2.
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Fix now l ≥ 0. For (i, k) ∈ Pl, let

Bi :=
k−1∑

j=i+1

wj(Fj − Fi) and B′
i :=

k−1∑

j=i+1

wj(Fj − Fk).

Rewriting (13) as

Al =
∑

j∈Jl

wjFj +
1
2

∑

(i,k)∈Pl

k−1∑

j=i+1

wj(Fi + Fk),

and noting that

A =
∑

j∈Jl

wjFj +
∑

(i,k)∈Pl

k−1∑

j=i+1

wjFj ,

it follows that

A−Al =
1
2

∑

(i,k)∈Pl

(Bi + B′
i).

Hence, by the triangular inequality,

||A−Al|| ≤
1
2
||
∑

(i,k)∈Pl

Bi||+
1
2
||
∑

(i,k)∈Pl

B′
i||. (44)

We bound each of the two terms in the RHS of (44) separately. First observe that if (i, k) and
(i′, k′) are two distinct elements of Pl with i < i′, then

E(BiBi′) =
k−1∑

j=i+1

k′−1∑

j′=i′+1

wjwj′E((Fj − Fi)(Fj′ − Fi′))

= 0,

where the second equation follows from (40). Thus

||
∑

(i,k)∈Pl

Bi||
2 =

∑

(i,k)∈Pl

||Bi||
2.

On the other hand, for (i, k) ∈ Pl, by the triangular inequality,

||Bi|| ≤
k−1∑

j=i+1

|wj | ||Fj − Fi||

≤ W ′(i + 1, k − 1)
√
||Fk||2 − ||Fi||2,

where the second equation follows from (42). Using Proposition D.2, it follows that
∑

(i,k)∈Pl

||Bi||
2 ≤ 2−2l

∑

(i,k)∈Pl

(||Fk||
2 − ||Fi||

2)

= 2−2l(||Fm||
2 − ||F0||

2)

= 2−2lVar(Fm).

We conclude that
||
∑

(i,k)∈Pl

Bi|| ≤ 2−lStd(Fm).

The same upper bound on ||
∑

(i,k)∈Pl
B′

i|| can be shown in a similar way. Hence

||A−Al|| ≤ 2−lStd(Fm).

This concludes the proof.
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E Proof of Theorem 3.3

The proof is similar to that of Theorem 3.2. We apply the results in Section 2.2 with Yl = Ul

for 0 ≤ l ≤ L, and replace Ȳl with Ūl and Ȳ with Ū . As UL = U , the analysis of Section 2.2
shows that E(Ū) = E(U) = E(f(A))− α. This implies (20). Let

m̄ :=
m

∑L
l=0

√
μl|Jl|

.

Since nl ≥ m̄
√

μl/|Jl| for 0 ≤ l ≤ L, it follows from (1) that

Var(Ū) ≤ m̄−1(
L∑

l=0

√
μl|Jl|)

=
(
∑L

l=0

√
μl|Jl|)2

m
. (45)

As μ0 = Var(U0), by (17), we have μ0 ≤ κ2Var(Fm). By arguments similar to those leading
to (37), for l ≥ 1,

||Ul − Ul−1||
2 ≤ 2(||Ul − U ||2 + ||Ul−1 − U ||2).

Since ||Ul−1 − U ||2 ≤ 4κ22−2lVar(Fm) by (18),

||Ul − Ul−1||
2 ≤ 10κ22−2lVar(Fm).

We conclude that μl ≤ 10κ22−2lVar(Fm) for 0 ≤ l ≤ L. Since |Jl| ≤ 2l+1, it follows from (45)
that

mVar(Ū) ≤
20κ2Var(Fm)
(1− 2−1/2)2

,

which implies (21), as 20(1− 2−1/2)−2 ≈ 233.14.
Denote by Cl the expectation of the time to simulate Ul − Ul−1, for 0 ≤ l ≤ L, and let

C̄ :=
∑L

l=0 nlCl be the expected cost of computing Ū . As in the proof of Theorem 3.2, it can
be shown that there is a constant c′ independent of m such that Cl ≤ c′|Jl| for 0 ≤ l ≤ L. As
nl ≤ 1 + m̄

√
μl/|Jl|,

C̄ ≤ c′
L∑

l=0

|Jl|+ c′m̄
L∑

l=0

√
μl|Jl|.

Since |Jl| ≤ 2l+1 for l ≥ 0, it follows that C̄ ≤ c′2L+2 + c′m ≤ 9c′m.

F Proof of Proposition 3.2

By (13) and (26),

Âl −Al =
∑

j∈Jl

wj(F̂
l
j − Fj) +

1
2

∑

(i,k)∈Pl

W (i + 1, k − 1)((F̂ l
i − Fi) + (F̂ l

k − Fk)).

Hence

||Âl −Al|| ≤
∑

j∈Jl

wj ||F̂
l
j − Fj ||+

1
2

∑

(i,k)∈Pl

W (i + 1, k − 1)(||F̂ l
i − Fi||+ ||F̂

l
k − Fk||).

As ||F̂ l
j − Fj || ≤

√
c22−βl for j ∈ Jl and

∑

j∈Jl

wj +
∑

(i,k)∈Pl

W (i + 1, k − 1) = 1,

it follows that ||Âl−Al|| ≤
√

c22−βl. Together with (14) and (36), this shows that ||Âl−A||2 ≤
c32−βl. Similarly, as ||A0 −W (1,m)F0||2 ≤ Var(Fm), we have ||Â0 −W (1,m)F0||2 ≤ c3.
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G Proof of Theorem 3.4

The proof is similar to that of Theorem 3.2. By A2 and (10), the vector (F̂ l−1, F̂ l) can be
simulated in O(2l) expected time for l ≥ 1. Hence, by (26), there is a constant c′ independent
of m such that, for l ≥ 0, the expectation of the time to simulate Ûl − Ûl−1 is at most c′2l. As
|Û0| ≤ κ|Â0 −W (1,m)F0|, Proposition 3.2 implies that ||Û0||2 ≤ c3κ

2, where c3 is defined as
in Proposition 3.2. Similarly, for l ≥ 0, as |Ûl − U | ≤ κ|Âl − A|, Proposition 3.2 shows that
||Ûl − U ||2 ≤ c3κ

22−βl. The conditions of Proposition 2.1 are thus met for Y = U and Yl = Ûl

for l ≥ 0, with ν = c3κ
2 and c = c′. Thus, V̂ = Z is square-integrable with E(V̂ ) = E(U). This

implies (27). By (4),

||V̂ ||2 ≤
20c3κ

2

1− 2−(β−1)/2
,

and so Var(V̂ ) is upper-bounded by a constant independent of m. By (5), the expectation of
the time to simulate V̂ is at most c′/(1− 2−(β−1)/2). This completes the proof.

H Proof of Theorem 3.5

By arguments similar to those used in the proof of Theorem 3.4, there is a constant c′ indepen-
dent of m and of ε such that the expected cost of computing Ûl − Ûl−1 is at most c′2l for l ≥ 0.
Also, ||Û0||2 ≤ c3κ

2 and, for l ≥ 0,

||Ûl − U ||2 ≤ c3κ
22−l.

The conditions of Proposition 2.2 are thus met for Y = U and Yl = Ûl for l ≥ 0, with ν = c3κ
2

and c = c′. By (7), V̂ = ZI is square-integrable and (E(V̂ − U))2 ≤ c3κ
2ε2. This implies (28).

Similarly, (8) implies that
Var(V̂ ) ≤ 48c3κ

2 log2(1/ε).

Furthermore, the expectation of the time required to simulate V̂ is at most 4c′ log2(1/ε).

I Simulation of Square-Root diffusions

Proposition I.1 shows how to sample F (t), for t ∈ [0, T ]. Proposition I.1 and its proof are inspired
from the analysis of the Cox-Ingersoll-Ross process in (Glasserman 2004, Section 3.4.1).

Proposition I.1. Let N be a Poisson random variable with mean 2F0/(σ2t). For integer
k ≥ 1, let χ2

k be a Chi-Square random variable with k degrees of freedom independent of N ,
and let χ2

0 = 0. Then F (t) has the same distribution as (σ2t/4)χ2
2N . Furthermore, F (t) is

square-integrable.

Proof. For t ∈ [0, T ], let X(t) = 4F (t)/σ2, and let x = X(0). Then

X(t) = x + 2
∫ t

0

√
X(s) dW (s). (46)

Hence X is a squared Bessel process of dimension 0. Such a process is a martingale (Jeanblanc,
Yor and Chesney 2009, p. 339), and so

∫ t
0 X(s) ds has finite expectation. By (46) and the

isometry of stochastic integrals (Jeanblanc, Yor and Chesney 2009, Section 1.5.1), it follows
that X(t) is square-integrable. By (Jeanblanc, Yor and Chesney 2009, p. 344), for t > 0, we
have Pr(X(t) = 0) = e−x/(2t) and X(t) has density

qt(x, y) =
1
2t

√
x

y
exp(−

x + y

2t
)I1(
√

xy

t
)
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at y > 0, where I1 is the modified Bessel function with index 1 defined for z > 0 by

I1(z) =
∞∑

k=0

(z/2)2k+1

k!(k + 1)!
.

For y > 0 and k ≥ 1,

Pr(χ2
2k ≥ y) =

1
2

∫ ∞

y
e−z/2 (z/2)k−1

(k − 1)!
dz.

Thus,

Pr(tχ2
2k ≥ y) =

1
2t

∫ ∞

y
exp(−

z

2t
)(

z

2t
)k−1 1

(k − 1)!
dz.

Since E(N) = x/(2t), we have

Pr(N = k) = exp(−
x

2t
)(

x

2t
)k 1

k!
,

and so

Pr(tχ2
2N ≥ y) =

∞∑

k=1

Pr(N = k) Pr(tχ2
2k ≥ y)

=
1
2t

∫ ∞

y
exp(−

x + z

2t
)

∞∑

k=1

(
x

2t
)k(

z

2t
)k−1 1

(k − 1)!k!
dz

=
∫ ∞

y
qt(x, z) dz

= Pr(X(t) ≥ y).

Thus, X(t) has the same as tχ2
2N . This concludes the proof.

Consider now a time grid G consisting of n + 1 dates 0 = τ0 < τ1 < ∙ ∙ ∙ < τn. We can use
Proposition I.1 to recursively sample F (τk) for 1 ≤ k ≤ n, and thereby simulate the forward
price process on G in O(n) expected time. Algorithms that simulate in unit expected time
Poisson and Chi-Square random variables are given in (Devroye 1986). In our experiments,
though, we have used generators from the standard C++ library.

J Detailed implementation of algorithms

This section presents a detailed implementation of the RMLMC, MLMC and RMLMC-Milstein
algorithms. It assumes that Algorithm M has been executed and uses the same notation as
Section 3.

J.1 The exact simulation case

This section assume that A1 holds.

J.1.1 Generating Ul − Ul−1

The function GDU takes as input a non-negative integer l and generates an instance of Ul−Ul−1

in O(2l) expected time.

J.1.2 Algorithm RMLMC

The algorithm RMLMC generates in constant expected time a random variable V such that
the price of the Asian option with payoff f(A) at T is equal to e−rT (E(V ) + α). The variance
of V is upper-bounded by a constant independent of m.
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Algorithm 1 The function GDU
function GDU(l)

if l > L then
return 0

end if
Simulate (Fj), j ∈ Jl

Al ←
∑

j∈Jl
wjFj + 1

2

∑
(i,k)∈Pl

W (i + 1, k − 1)(Fi + Fk)
if l = 0 then

return f(A0)− f(W (1,m)F0)
end if
Al−1 ←

∑
j∈Jl−1

wjFj + 1
2

∑
(i,k)∈Pl−1

W (i + 1, k − 1)(Fi + Fk)
return f(Al)− f(Al−1)

end function

Algorithm 2 The algorithm RMLMC

Simulate a random variable N such that Pr(N = l) = pl for l ∈ N, where pl := (1−2−3/2)2−3l/2

return GDU(N)/pN

J.1.3 Algorithm MLMC

The algorithm MLMC generates a random variable Ū such that the price of the Asian option
with payoff f(A) at T is equal to e−rT (E(Ū) + α). The expected time to generate Ū is O(m)
and the variance of Ū is O(1/m).

Algorithm 3 The algorithm MLMC
for l← 0, L do

Estimate μl ← Var(Ul − Ul−1) via 103 independent runs of GDU(l)
end for
for l← 0, L do

nl ←
⌊
1 +

30m
√

μl/|Jl|
∑L

l′=0

√
μl′ |Jl′ |

⌋

Let Ūl be the average of nl independent copies of Ul −Ul−1, simulated by calling GDU(l)
end for
return Ū ←

∑L
l=0 Ūl

J.2 The approximate simulation case

This section, based on the Milstein scheme, make the same assumptions as Section 3.3.3.

J.2.1 Generating Ûl − Ûl−1

The function GDU-Milstein takes as input a non-negative integer l and generates an instance
of Ûl − Ûl−1 in O(2l) expected time.

J.2.2 Algorithm RMLMC-Milstein

The algorithm RMLMC-Milstein generates in constant expected time a random variable V̂
such that the price of the Asian option with payoff f(A) at T is equal to e−rT (E(V̂ ) + α). The
variance of V̂ is upper-bounded by a constant independent of m.
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Algorithm 4 The function GDU-Milstein
function GDU-Milstein(l)

Let 0 = τ0 < τ1 < ∙ ∙ ∙ < τn = T be the elements of the set

{tj : j ∈ Jl} ∪ {i2
−lT : 0 ≤ i ≤ 2l}

sorted in increasing order
Simulate (W (τ1), . . . ,W (τn))
F ∗

0 ← F0

for k ← 0, n− 1 do
ΔW ←W (τk+1)−W (τk)
F ∗

k+1 ← F ∗
k + b(F ∗

k , τk)(ΔW ) + 1
2b(F ∗

k , τk) ∂b
∂x(F ∗

k , τk)((ΔW )2 − (τk+1 − τk))
end for
for j ∈ Jl do

F̂ l
j ← F ∗

k , where k is the index such that τk = tj
end for
Âl ←

∑
j∈Jl

wjF̂
l
j + 1

2

∑
(i,k)∈Pl

W (i + 1, k − 1)(F̂ l
i + F̂ l

k)
if l = 0 then

return f(Â0)− f(W (1,m)F0)
end if
Let 0 = τ ′

0 < τ ′
1 < ∙ ∙ ∙ < τ ′

n′ = T be the elements of the set

{tj : j ∈ Jl−1} ∪ {i2
−l+1T : 0 ≤ i ≤ 2l−1}

sorted in increasing order
F ′

0 ← F0

for k ← 0, n′ − 1 do
ΔW ←W (τ ′

k+1)−W (τ ′
k)

F ′
k+1 ← F ′

k + b(F ′
k, τ

′
k)(ΔW ) + 1

2b(F ′
k, τ

′
k)

∂b
∂x(F ′

k, τ
′
k)((ΔW )2 − (τ ′

k+1 − τ ′
k))

end for
for j ∈ Jl−1 do

F̂ l−1
j ← F ′

k, where k is the index such that τ ′
k = tj

end for
Âl−1 ←

∑
j∈Jl−1

wjF̂
l−1
j + 1

2

∑
(i,k)∈Pl−1

W (i + 1, k − 1)(F̂ l−1
i + F̂ l−1

k )

return f(Âl)− f(Âl−1)
end function

Algorithm 5 The algorithm RMLMC-Milstein

Simulate a random variable N such that Pr(N = l) = pl for l ∈ N, where pl := (1−2−3/2)2−3l/2

return GDU-Milstein(N)/pN
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Table 7: Pricing average price calls in the Black-Scholes model with m = 500 and different
values of n

Method n Price Std Cost Cost × Std2 Time Effcost Efftime

RMLMC 6.25 × 106 0.3499 6.0 × 10−4 1.34 × 107 4.8 2 45 31
2.5 × 107 0.3509 3.0 × 10−4 5.38 × 107 4.8 6 45 31

1 × 108 0.3506 1.5 × 10−4 2.15 × 108 4.8 25 45 31
4 × 108 0.3506 7.5 × 10−5 8.61 × 108 4.8 99 45 32

MLMC 1.25 × 103 0.3511 5.9 × 10−4 1.36 × 107 4.7 1 46 34
5 × 103 0.3507 3.0 × 10−4 5.45 × 107 4.8 5 45 36
2 × 104 0.3504 1.5 × 10−4 2.18 × 108 4.9 22 44 35
8 × 104 0.35066 7.5 × 10−5 8.73 × 108 4.9 87 44 36

RMLMC-Mil. 6.25 × 106 0.3507 5.7 × 10−4 2.09 × 107 6.8 2 32 23
2.5 × 107 0.3508 2.8 × 10−4 8.37 × 107 6.8 9 32 23

1 × 108 0.3506 1.4 × 10−4 3.35 × 108 6.8 36 32 23
4 × 108 0.35061 7.1 × 10−5 1.34 × 109 6.8 136 32 25

Table 8: Pricing average price calls in the Black-Scholes model via multilevel and control variate
methods

m Method n Price Std Cost Cost × Std2 Time Effcost Efftime

125 CV 1 × 106 0.3522 2.2 × 10−4 1.25 × 108 6.1 11 9 9
RMLMC+CV 1 × 108 0.35228 6.1 × 10−5 2.1 × 108 0.78 24 70 49
MLMC+CV 8 × 104 0.35221 5.7 × 10−5 2.27 × 108 0.72 22 75 62
RMLMC-Mil.+CV 1 × 108 0.35219 6.5 × 10−5 3.3 × 108 1.4 36 40 29

250 CV 1 × 106 0.3510 2.2 × 10−4 2.5 × 108 12 21 9 9
RMLMC+CV 1 × 108 0.35113 6.2 × 10−5 2.13 × 108 0.81 25 136 96
MLMC+CV 4 × 104 0.35115 5.8 × 10−5 2.29 × 108 0.76 22 145 122
RMLMC-Mil.+CV 1 × 108 0.35105 6.5 × 10−5 3.33 × 108 1.4 36 78 59

500 CV 1 × 106 0.3505 2.2 × 10−4 5 × 108 24 42 9 8
RMLMC+CV 1 × 108 0.35059 6.2 × 10−5 2.15 × 108 0.83 25 259 181
MLMC+CV 2 × 104 0.35061 5.8 × 10−5 2.36 × 108 0.8 23 269 222
RMLMC-Mil.+CV 1 × 108 0.35055 6.5 × 10−5 3.35 × 108 1.4 37 153 112

K Further numerical experiments and combination with a con-
trol variate method

We report here additional numerical experiments and show how to combine our approach with
a control variate method. We use the Black-Scholes model in our numerical experiments. Sec-
tions K.1 and K.2 assume that S0 = K = 2, σ = 50%, r = 5% and T = 2.

K.1 Varying the number of simulations

Table 7 gives prices of average price calls for the RMLMC, MLMC and RMLMC-Milstein
algorithms with different values of n. As expected, for each algorithm, the variable “Cost”
(resp. “Std”) is roughly proportional to n (resp. n−1/2). Similarly, the variables Cost × Std2,
“Effcost” and “Efftime” are roughly independent of n. The RMLMC and MLMC methods have
a similar performance and outperform the RMLMC-Milstein algorithm.

K.2 Using A as control variate

Given a real number Δ, define the real-valued function fΔ of one variable as follows: fΔ(x) :=
f(x)−Δ(x−W (1,m)F0). Note that fΔ is (κ + Δ)-Lipschitz and, by the martingale property,
that E(fΔ(A)) = E(f(A)). Thus, the Asian options with payoff f(A) and fΔ(A) at maturity
T have the same price at time 0. Hence, under A1, a control variate method (CV) can price
the Asian option with payoff f(A) by discounting the average of fΔ(A) over n independent
simulated paths. We can combine the CV method with the pricing algorithms in this paper,
under A1 or A2, by applying them to fΔ rather than f . In order to minimize Var(fΔ(A)), we
set

Δ =
Cov(f(A), A)

Var(A)

25



Table 9: Efficiency of pricing algorithms for average price calls in the Black-Scholes model, with
S0 = 2, σ = 50%, r = 5%, T = 2, m = 500 and various values of K

Method K = 1.4 K = 1.6 K = 1.8 K = 2 K = 2.2 K = 2.4 K = 2.6
RMLMC 51 49 47 45 43 41 39
MLMC 50 48 46 44 42 39 38
RMLMC-Mil. 35 34 33 32 31 30 29
CV 59 26 14 9 6 5 4
RMLMC+CV 1413 723 416 259 177 132 103
MLMC+CV 1776 811 431 269 184 132 104
RMLMC-Mil.+CV 695 387 236 153 108 83 67

Table 10: Efficiency of pricing algorithms for average price calls in the Black-Scholes model,
with S0 = K = 2, r = 5%, T = 2, m = 500 and various values of σ

Method σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5 σ = 0.6 σ = 0.7
RMLMC 54 51 49 47 45 43 40
MLMC 52 49 47 46 44 41 38
RMLMC-Mil. 37 35 34 33 32 30 27
CV 11 8 7 8 9 10 12
RMLMC+CV 314 226 222 236 259 290 331
MLMC+CV 315 231 227 246 269 308 350
RMLMC-Mil.+CV 213 155 150 152 153 151 146

in our numerical experiments (Glasserman 2004, Section 4.1.1). We estimate Δ by Monte Carlo
simulation using 104 independent runs. Table 8 gives prices of average price calls using the CV
method and its combination with the RMLMC, MLMC and RMLMC-Milstein methods. For
each value of m, the CV method is about 9 times more efficient than standard Monte Carlo,
according to the variables “Effcost” and “Efftime”. Moreover, a comparison between Tables 1
and 8 shows that, combining the CV method with the RMLMC, MLMC, and RMLMC-Milstein
algorithms improves their efficiency by about a factor of 6, 6, and 5, respectively. In line
with Theorems 3.2, 3.3 and 3.4, the efficiency of the RMLMC, MLMC and RMLMC-Milstein
algorithms, combined with the CV method, is roughly proportional to m.

K.3 Varying the strike and the volatility

Table 9 (resp. 10) gives Effcost for the pricing algorithms considered previously applied to average
price calls with various values of K (resp. σ). In accordance with previous experiments, we set
n = 108 for the RMLMC and RMLMC-Milstein algorithms and their combination with the CV
method, n = 2 × 104 for the MLMC algorithm and its combination with the CV method, and
n = 106 for the CV method. Table 9 shows that, as K increases, the efficiency of the RMLMC,
MLMC and RMLMC-Milstein algorithms slightly decreases, while that of the CV method and
its combination with RMLMC, MLMC and RMLMC-Milstein strongly decreases. It is well-
known that the efficiency of a control variate method can vary widely with the parameters of a
problem (Glasserman 2004, Section 4.1.1). In contrast, in Table 10, the efficiency of the pricing
algorithms varies mildly with σ, with no clear tendency in the dependence on σ.

L Generalization to continuously monitored Asian options

Denote by B([0, T ]) the Borel σ-algebra on [0, T ]. This section assumes that (Ω,F) is a
measurable space and that (ω, t) 7→ F (t)(ω) is a measurable function on the product space
(Ω,F) × ([0, T ],B([0, T ])), where F (t)(ω) = F (t) is the forward price at time t. Let w be a
measurable function on [0, T ] such that |w(t)| ≤ T−1 for 0 ≤ t ≤ T , and let w∗ be a real number
with |w∗| ≤ 1/2. This section studies a continuously monitored Asian option with payoff f(Ac)
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at maturity T , where f is a κ-Lipschitz real-valued function of one variable and

Ac := w∗F (T ) +
∫ T

0
w(t)F (t) dt.

Here again, we assume the existence of a risk-neutral probability Q such that the stochastic
process (Ft), 0 ≤ t ≤ T , is a Q-martingale, and the price of the option at time 0 is e−rTE(f(Ac)),
where r is the risk-free rate at time 0 for maturity T . We also assume that F (T ) is square-
integrable and that, for l ≥ 0 and 0 ≤ i ≤ 2l − 1,

W (l)(i) :=
∫ (i+1)2−lT

i2−lT
w(t) dt

can be calculated in constant time. By the Cauchy-Schwartz inequality,

(∫ T

0
w(t)F (t) dt

)2

≤

(∫ T

0
w(t)2 dt

)(∫ T

0
F (t)2 dt

)

≤ T−1

∫ T

0
F (t)2 dt.

A continuous-time version of (41) implies that ||F 2(t)||2 ≤ ||F (T )||2 for 0 ≤ t ≤ T . Thus

E

((∫ T

0
w(t)F (t) dt

)2
)

≤ T−1E

((∫ T

0
F (t)2 dt

)2
)

= T−1

∫ T

0
||F (t)||2 dt

≤ ||F (T )||2,

where the second equation follows from Fubini’s Theorem. Hence Ac is square-integrable. For
l ≥ 0, define the following trapezoidal approximation of A:

Ac
l := w∗F (T ) +

1
2

2l−1∑

i=0

W (l)(i)(F (i2−lT ) + F ((i + 1)2−lT )).

The following is a continuous-time version of Theorem 3.1.

Theorem L.1. ||Ac
0 − (w∗ + W (0)(0))F0||2 ≤ Var(F (T )) and, for l ≥ 0,

||Ac
l −Ac||2 ≤ 2−2lVar(F (T )).

Proof. The proof is similar to that of Theorem 3.1. By construction,

Ac
0 = w∗F (T ) +

1
2
W (0)(0)(F (0) + F (T )).

Hence

Ac
0 − (w∗ + W (0)(0))F0 = (

1
2
W (0)(0) + w∗)(F (T )− F0),

and so ||Ac
0 − (w∗ + W (0)(0))F0|| ≤ ||F (T ) − F0||. This implies the desired bound on ||Ac

0 −
(w∗ + W (0)(0))F0||.

Fix now l ≥ 0 and set θi := i2−lT . For 0 ≤ i ≤ 2l − 1, set

Bi :=
∫ θi+1

θi

w(t)(F (t)− F (θi)) dt and B′
i :=

∫ θi+1

θi

w(t)(F (t)− F (θi+1) dt.
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Thus,

Ac −Ac
l =

1
2

2l−1∑

i=0

(Bi + B′
i).

For 0 ≤ i ≤ 2l − 1, by the Cauchy-Schwartz inequality,

B2
i ≤

(∫ θi+1

θi

w(t)2 dt

)(∫ θi+1

θi

(F (t)− F (θi))
2 dt

)

≤ 2−lT−1

∫ θi+1

θi

(F (t)− F (θi))
2 dt.

The proof of (42) shows that, for 0 ≤ u ≤ s ≤ t ≤ T ,

||F (s)− F (u)||2 ≤ ||F (t)||2 − ||F (u)||2.

Hence, by Fubini’s theorem,

||Bi||
2 ≤ 2−lT−1

∫ θi+1

θi

||F (t)− F (θi)||
2 dt.

≤ 2−2l(||F (θi+1)||
2 − ||F (θi)||

2).

A similar calculation together with the inequality 2xy ≤ x2 +y2 shows that the random variable
∫

(t,t′)∈[θi,θi+1]×[θi′ ,θi′+1]
|F (t)− F (θi)| |F (t′)− F (θi′)| dt dt′

has a finite expectation. On the other hand, the proof of (40) shows that, for 0 ≤ u ≤ s ≤ t ≤ T ,

E(F (u)(F (t)− F (s))) = 0.

By Fubini’s theorem, it follows that, for 0 ≤ i < i′ ≤ 2l − 1,

E(BiBi′) =
∫

(t,t′)∈[θi,θi+1]×[θi′ ,θi′+1]
w(t)w(t′)E((F (t)− F (θi))(F (t′)− F (θi′))) dt dt′

= 0.

The remainder of the proof is similar to that of Theorem 3.1.

Theorem L.1 can be used to build estimators for the continuously monitored Asian option
price under Assumptions A1 or A2. For instance, a proof similar to that of Theorem 3.2 implies
the following.

Theorem L.2. Suppose A1 holds. Let N ∈ N be an integral random variable independent
of (Fj : 1 ≤ j ≤ m) such that Pr(N = l) = pl for non-negative integer l, where pl := (1 −
2−3/2)2−3l/2. Set V c := (f(Ac

N )− f(Ac
N−1))/pN , where Ac

−1 := (w∗ + W (0)(0))F0. Then V c is
square-integrable,

E(f(A)) = E(V ) + f(Ac
−1),

and
Var(V c) ≤ 70κ2Var(F (T )).

Furthermore, the expectation of the time required to simulate V c is finite.
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