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Abstract

The spectral method is the best currently known technique to prove lower bounds on
expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue,
are the best known explicit expanders. The spectral method yielded a lower bound
of k/4 on the expansion of linear sized subsets of k-regular Ramanujan graphs. We
improve the lower bound on the expansion of Ramanujan graphs to approximately
k/2. Moreover, we construct a family of k-regular graphs with asymptotically optimal
second eigenvalue and linear expansion equal to k/2. This shows that k/2 is the best
bound one can obtain using the second eigenvalue method. We also show an upper
bound of roughly 1 + vk — I on the average degree of linear-sized induced subgraphs
of Ramanujan graphs. This compares positively with the classical bound 2k — 1. As
a byproduct, we obtain improved results on random walks on expanders and construct
selection networks (resp. extrovert graphs) of smaller size (resp. degree) than was

previously known.
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ity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory
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1 Introduction

Expander graphs are widely used in Theoretical Computer Science, in areas ranging from parallel

computation [1, 7, 21, 28, 34] to complexity theory and cryptography [2, 8, 16, 35]. Given an
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undirected k-regular graph G = (V, F) and a subset X of V| the expansion of X is defined to be the
ratio |[N(X)|/|X|, where N(X) ={w € V : Jv € X, (v,w) € E} is the set of neighbors of X. An
(o, B, k,n)-expander is a k-regular graph on n nodes such that every subset of size at most an has
expansion at least (3.

It is known that random regular graphs are good expanders. In particular, for any 8 < k — 1,
there exists a constant « such that, with high probability, all the subsets of a random k-regular
graph of size at most an have expansion at least 3. The explicit construction of expander graphs is
much more difficult, however. The first explicit construction of an infinite family of expanders was
discovered by Margulis [25] in 1973, and improved in [15, 5, 17].

The best currently known method to calculate lower bounds on the expansion in polynomial time
relies on analyzing the second eigenvalue of the graph. Since the adjacency matrix A is symmetric,
all its eigenvalues are real and will be denoted by Ag > A1 > ... > A,_1. We have A\g = k, and
A = max(Ay, [An—1]) < k. Tanner [33] proved that for any subset X of V|

by
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[N (X)

Therefore, in order to get high expansion, we need A to be as small as possible. However, for any
sequence Gy, i of k-regular graphs on n vertices, iminf A(G,, ) > 2vk — 1 as n goes to infinity [3,
23, 27]. Therefore, the best expansion coefficient we can obtain by applying Tanner’s result is
approximately k/4. This bound is achieved by Ramanujan graphs, which have been explicitly
constructed [23, 26] for many pairs (k, n). By definition, a Ramanujan graph is a connected k-regular
graph whose eigenvalues # £k are at most 2¢/k — 1 in absolute value. The relationship between
the eigenvalues of the adjacency matrix and the expansion coefficient has also been investigated
in [3, 5, 6, 12], but the bound they get, when applied to non-bipartite Ramanujan graphs and for
sufficiently large k, is no better than Tanner’s bound. Other results about expanders are contained
in [9, 22, 30].

Some applications, such as the construction of non-blocking networks in [7], required an expan-
sion greater than k/2 for linear-sized subsets. Indeed, if the expansion of a subset X is greater than
k/2, a constant fraction its nodes have unique neighbors, i.e. neighbors adjacent to only one node
in X. This allows the construction of a matching between X and N(X) in a logarithmic number of
steps and using only local computations. Recently, Pippenger [29] showed that weak expanders are
sufficient in applications where an expansion greater than k/2 was required.

We define the linear expansion of a family of graphs (G, on n vertices to be the best lower bound

on the expansion of subsets of size up to an, where « is an arbitrary small positive constant, that 1s

N(X
supinfinf| ( )|,
a>0 n X |X|

where X ranges over the subsets of G, of size at most an. We show that if (G,) is a family of

k-regular graphs whose second largest eigenvalue is upper bounded by /N\, the linear expansion of

(Gy) is at least (k/2) (1 — /1= (4k — 4)/:\2) In particular, the expansion of linear-sized subsets

of Ramanujan graphs is lower bounded by a factor arbitrary close to k/2. On the other hand, for any
integer k such that & — 1 is a prime congruent to 1 modulo 4, and for any function m of n such that
m = o(n), we explicitly construct an infinite family of k-regular graphs G,, on n vertices such that
MGr) € (24 o(1))Vk — 1 and G, contains a subset of size 2m with expansion k/2. Since such a

family has asymptotically optimal second eigenvalue, this shows that k/2 is essentially the best lower



bound on the linear expansion one can obtain by the second eigenvalue method. The techniques
used in this construction can be applied to prove tightness of relationships between eigenvalues and
diameter [20]. Our results provide an efficient way to test that the expansion of linear sized subsets
of random graphs is at least k/2 — O(/c?’/‘llogl/2 k).  We also show that the average degree of
the induced subgraphs on linear-sized subsets of a k-regular graph G is upper bounded by a factor
arbitrary close to 1 + :\/2 + \/:\2/4 — (k= 1), where A= max(), 2v/k — 1). This bound is equal to
1 4+ Vk —1 in the case of Ramanujan graphs, improving upon the previously known bound [4] of
2k — 1.

Sections 3-5 contain our main results. In Section 6, we apply our techniques to obtain improved
results on random walks on expanders. Random walks are often used in complexity theory and
cryptography, and our bound improves upon previous results in [2, 16]. Applications to selection
networks and extrovert graphs are described in Section 7. We conclude with some remarks in
Section 8.

Some of the results in this paper have appeared in an extended abstract form in [18, 19], and in

a more detalied form in [20].

2 Notation, definitions, and background

Throughout the paper, G = (V, E) will denote an undirected graph on a set V of vertices. Let L?(V)
denote the set of real valued functions on V and L3(V) = {f € L*(V); >,y f(v) = 0}. As usual,

bl

we define the scalar product of two vectors f and g of L*(V) by

Fro=S F)go),

veEV

and the euclidean norm of a vector f by ||f|| = v/f - f. We denote the adjacency matrix of G by
Ag, or simply by A if there is no risk of confusion. The matrix A is the 0-1 n x n matrix whose
(i,7) entry is equal to 1 if and only (i, j) € E. It defines a linear operator in L?(V) that maps every
vector f € L?(V) to the vector Af defined by

ANy = Y flw) (2)
(vyw)eE
This operator is selfadjoint since Vf, g € L%(V),
AN -g=f- (A= 3 Fw). (3)
(vyw)eE

For any matrix or operator M with real eigenvalues, we denote by A;(M) the i-th largest eigenvalue
of M, Ai(Ag) by Ai(G), and max(A1(G), |An-1(G)|) by AM(G). For any subset W of V', we denote by
xw the characteristic vector of W: xw(v) = 1,if v € W, and 0 otherwise. We denote the adjacency
matrix of the graph induced on W by Aw, the real number A;(Aw ) by A;(W), and the set of nodes
at distance at most [ from W by B;(W). For the rest of this section, we assume that G is k-regular.

Fact 1 [24, 32] If B is a selfadjoint operator in a vector space L, then

- B
Ao(B) = max %
geL-10} ||gl|



(Clearly, the vector yv is an eigenvector of A with eigenvalue k. The vector space LZ(V) is
invariant under A, and the eigenvalues of the restriction of A to L2(V) are A (G),..., \n_1(G).
Therefore,

Fact 2 For any g € L2(V), we have g - Ag < X\ (G)]]g]|*. A

For two column vectors ¢ and h, we say that ¢ < h if every coordinate of g is at most its

corresponding coordinate in h.

Fact 3 [31, page 28, ex. 1.12] If a real symmetric malriz has only nonnegative entries, its largest
eigenvalue 1s nonnegative and has a corresponding eigenvector with nonnegative components. This

eigenvalue is largest in absolute value.

Fact 4 If a real symmetric matriz B has only nonnegative entries, and s is a vector with positive
components such that Bs < vs, then the largest eigenvalue of B 1s at most v. This property still
holds if only the off-diagonal eniries of B are assumed to be nonnegative [14]. W

Given a graph H, the cover graph H' of H is the graph defined on V/ =V x {0, 1} and where
((u, D), (v,m)) € V! x V' is an edge if and only (u,v) € E and [ # m.

Fact 5 The eigenvalues of H' consist of the eigenvalues of H and their negated values. B

3 Main lemma

In this section, we prove the main lemma (Theorem 1) that we will use later to derive lower bounds

on the expansion.

Lemma 1 If G = (V, E) is k-regular on n vertices, then for any f € L*(V), we have

Foar <@+ EE2D (5 gy

veEV

Proof We decompose f as the sum of a constant vector and a vector in L2(V). Let f =
(f - xv/n)xv be the orthogonal projection of f on the subspace spanned by the constant vector xy .
Then fy = f—f is the orthogonal projection of f on L2(V). By linearity, Af = Af+Afo = kf+Afo,
and so f-Af = k||f||>+ fo- Afo since f-Afy = Af-fo = kf- fo = 0. By Fact 2 and the Pythagorean
theorem, we have

fo - Afo < Mol = MG UIAR = A1)
Therefore, f-Af < M (G)||f]1* + (k — M (G))]|f]]>. We conclude the proof by noting that

17112 = (3 £) /.

veEV

Lemma 2 For any subset W of a k-regular graph G, we have Ag(W) < M (G) + (k— A (G))|W|/n.



Proof Let g be any element of L?(W). Consider the vector f € L?(V) that coincides with g on
L?(W) and is null on V — W. By Eq. 3, we see that ¢ - Awg = f - Agf. By applying Lemma 1 to

f, we have

g-awg < M@+ 2D (T o)’
< @)+ 221D gy g1,

The second equation follows from the Cauchy-Schwartz inequality. We conclude using Fact 1.

A similar relation [20, Section 4.1] holds between A;(W) and A;41(G), for 1 < ¢ < |[W|— 1.
Lemma 2 already gives a restriction on the structure of induced subgraphs. For example, since the
average degree of a graph i1s upper bounded by its largest eigenvalue, it implies that the average
degree of the induced subgraph on W is at most A1 (G)+(k—A1(G))|W|/n, which is roughly A1 (G) for
small linear-sized subsets. To obtain a stronger restriction on the induced subgraph on a linear-sized
subset X, we will apply Lemma 2 to the set B;(X). We start by comparing the largest eigenvalue
of the subgraph induced on B;(X) to the matrix of a weighted graph associated with X.

Let Ax be the diagonal matrix indexed by the vertices of X and whose entry (v, v) is equal to
the degree of v in the subgraph induced on X. We will simply denote by Ax(v) the diagonal entry
Ax(v,v). For # > 0 and integer [, let

1 sinh(16")
VE = 1sinh((1 4+ 1)6")

The matrix Mg’l can be regarded as the matrix of the weighted graph that is induced on X and has
in addition a loop of weight (k — 1)_1/2(sinh(19’)/sinh((1 +1)0"))(k — Ax(v)) on each node v of X.

M= Ax + (kI — Ax).

Lemma 3 Suppose G = (V| E) is k-regular. Let | be a positive integer, X a non-empty subset of
V, & a positive real number, and X' = 2v/k — 1cosh @'. If Ao(Bi(X)) < X, then /\O(M;’l) <N,

Proof Let W = B;(X). The idea behind the proof is as follows. Let f € L?(X) be an eigenvector
of Mg(l’l corresponding to its largest eigenvalue. We will extend f to W so that it becomes roughly
an eigenvector of Ay . If the largest eigenvalue of Mg’l were too big, we would get a large eigenvalue
for Aw, contradicting the fact that Aq(T¥) < X.

We define the sequence r; as follows:

_sinh((T+1=0)0")(k = 1)77/2
e sinh((1 + 1)0')

The sequence r; is strictly positive and decreasing for 0 < ¢ <[, and

/\/7“2' = 7ri_1+ (]C — 1)7°Z'_|_1 (4)
/\/7“[ ri—1. (5)

By Fact 3, we can assume that all the entries of f are nonnegative. We extend the vector f to W
by setting
f(U) = glea})(((f(u)rd(v,u))a

for v € W — X, where d(v,u) denote the distance in G between v and u. Note that f is nonnegative

on W since every node in W 1s at distance at most / from some node in X.



Claim 1 For any v € W — X, we have (Aw f)(v) > X f(v).

Proof Let u € X besuch that f(v) = f(u)rgw ). Note that i = d(v,u) can be assumed to be at
most [ since r; < 0 for j > 1+ 1. Let v; be the first node on a shortest path from v to u. Since the

distance between vy and u is 7 — 1, we have v; € W and

f(o1) = f(u)rizr. (6)
We now distinguish two cases:

e Case 1. i =[. Combining Eqs. 6 and 5, we get in this case

(Aw f)(v) > f(v1) > fu)rior = N flu)yr = N f(v),
as required.

e Case 2. i < [. In this case, the k neighbors of v are at distance at most i + 1 <[ from u. By
monotonicity of the sequence r, it follows that the value of f on each of these neighbors 1s at

least f(u)r;+1. Using again Eq. 6, we have

(Aw f)(v) > flvr) + (k= 1) f(u)rips
= fu)(rics + (k= Driga)
= MNf(u)r;
= MNf(v).

Claim 2 For any v € X, we have (Aw f)(v) > /\O(M;I’l)f(v).

Proof For any v € X, the value of f on each of the k — Ax(v) neighbors of v in W — X is at
least f(v)r(1). Therefore,

(Aw F)(v) > (Ax F)(v) + (k = Ax () f(0)r(1) = (M4 F)(v) = Ao(ME") F(v).
[ |

Since Ag(W) < X, we have (Aw f) - f < XN||f]|?, by Fact 1. Assume for contradiction that
A< /\O(Mg(l’l). By Claim 1 and Claim 2, this implies that (Aw f) - f > X||f||?, leading to a

contradiction. H

For # > 0, define

My = Ax + (kI — Ax).

1
Vk —1ef
The matrix M% can be regarded as the matrix of the weighted graph that is induced on X and has
in addition a loop of weight (k — 1)_1/26_9(]6’ — Ax(v)) on each node v of X.

Theorem 1 Suppose G = (V, E) is k-regular, and let A= max(A (G), 2vk — 1) = 24/k — 1 cosh 4,
where 8 > 0. For any non-empty subset X of V' of size at most k_1/5|V|, we have

Ao(M5) < M1+ 0(e)),

where the constant behind the O s a small absolute constant.



Proof Tet ! = |1/2¢] and let W be the set of nodes at distance at most ! from X. A simple
calculation shows that |[W| < 3k!| X| < 3k=1/(29n. Tt follows from Lemma 2 that Ag(W) < X, where
N = X+ 3k = 9 /k —Tcosh¢, with @ > 6 > 0. A straightforward calculation shows that
XN = A(140(e)) and cosh @' —cosh § = O(k'/2=1/(29)) = O(e?). We will use the following inequalities
to show that the matrix Mg’l is approximated by M¥.

Claim 3 For x > y > 0, we have (x — y)? < 2(cosh x — cosh y).

Proof This follows immediately from Taylor’s expansion formula. ll

Claim 4
: !
[ L . sinh(16") —
[+1 ~ sinh((I+1)8) —
Proof Since sinh((I + 1)¢") > (I + 1)sinh ¢, we have
_¢' sinh(16") e~ _ o= (+2)0 _ _(4nye’__ sinh#’ e=?
sinh((1 +1)¢7)  eU+1)8" — =(+1)8" — ¢ sinh(({+1)0") = I+ 1°

Tt follows from Claim 3 that 8’ — 8 = O(¢). On the other hand, Claim 4 implies that

sinh(16")

D — ¢ (+00/0) =1+ 0(e).

Therefore, all entries of the diagonal matrix M§ —Mg’l are O(vk — 1¢), and so its largest eigenvalue
is O(vV'k — 1¢). But, as a consequence of Fact 1, the function that associates to a symmetric matrix

its largest eigenvalue is subadditive. Therefore,

M(ME) < Ao(MPY) +O(WVE—1e)
< N 400X
= M1+0(e),

where the second inequality follows from Lemma 3. H

Remark 1 The only place where we used in the proof the fact that A;(G) is the second eigenvalue
of G was in conjunction with Lemma 2 to upper bound Ag(W). In particular, if A* is a real number
such that for any subset W of V| we have A\g(W) < A* 4 2k|WW|/|V], then Theorem 1 remains valid
if A1(G) is replaced by A*.

4 Lower bounds on the expansion and on the average degree

We will derive lower bounds on the expansion by applying Theorem 1 to the union of X and N(X),
after reducing to the case where the graph is bipartite and X is on one side of the partition. The
idea is that if the expansion of X is small, a node in N(X) will be adjacent to many nodes in X, in
average. This implies that the largest eigenvalue of the weighted matrix associated to the subgraph
induced on X U N(X) is large, contradicting with Theorem 1. We also use Theorem 1 to derive

upper bounds on the average degree of induced subgraphs.



Theorem 2 If G = (V, E) is k-regular and A= max(A(G), 2vk — 1), then for any non-empty
subset X of V of size at most k=/¢|V]|,

O & (1 SNV 4) (1-0(),

where the constant behind the O s a small absolute constant.

Proof We first show how to reduce the problem to the case where the graph G is bipartite and X
is on one side of the partition. Consider the cover graph G’ of (7, as defined in Section 3. We show
that Remark 1 applies to the graph G’ and A* = A1(G). Indeed, let W be a subset of V', W, C V
the set of nodes u of V' such that (u,0) € W or (u,1) € W, and W* = W, x {0, 1}. Since the largest
eigenvalue of a graph is no less than the largest eigenvalue of any induced subgraph [10, page 156],
Ao(W) < Ag(W*). (We remind the reader that Ag(TV) (resp. Ag(W™*)) is the largest eigenvalue of
the subgraph of G/ induced on W (resp. W*), and Ao(W,) is the largest eigenvalue of the subgraph
of (¢ induced on W,.) On the other hand, it follows from Fact 5 and Fact 3 that Ao(W*) = Ao(17}).
Using Lemma 2, we get

W]

|Hp|
1( ) |‘r/|’

vl

Ao(W) < Xo(Wy) < M(G) + k

as required by Remark 1. Note that we cannot apply directly Theorem 1 because, by Fact 5, we
have A1 (G') = A(G), which may be different from A1 (G).

Let Y be the subset of V’ equal to X x {0}. Denote the adjacency matrix of G’ by A’, and the
set of neighbors of ¥ in G’ by N’(Y). Let X = 2k — 1cosh 6, with > 0. By applying Remark 1
to the graph G’, the set of vertices Y U N'(Y), and ¢ = 2¢, we see that the largest eigenvalue of
the matrix M’ = MXG’UN’(Y) is at most :\(1 + O(¢)). Now, consider the function f € L2(Y U N'(Y))

defined by f = kxy + Axwn/(v). By Fact 1,
M'f - f <M1+ 0)IfI1 (7)

The left-hand side is the sum of two terms. The first is equal to A’ f - f, and the second corresponds
to the weighted self-loops. By Eq. 3, we have A’f - f = 2Mk?|Y|. On the other hand, since the
loops have no weight on ¥ and have average weight e=%(k — 1)="/2(k — k|Y|/|N'(Y)|) on N'(Y),
the second term is equal to e=%(k — 1)=1/2(k|N'(Y)| — k|Y])A2. Thus Eq. 7 reduces to

32
Vi — 1ef
By replacing Y| by | X, |N'(Y)| by |N(X)|, we get after simplifications

20| + KON/ (V)] = Y1) < M1+ O() (kY[ + X N'(Y)]).

kIX|(k — 2e7% cosh 0) < [N (X)|(A% = 2ke™? cosh 6)(1 4 O(e)). (8)

Noting that A2 — 2ke~% cosh 6 = 2(ke® — 2 cosh @) cosh 6, Eq. 8 reduces to:

|]\]§()|()| = 2ef c]f)sh 9(1 —00).

We conclude the proof using the formula

1 1 4k — 4
S R N Y P s
e? cosh cosh? 0 A2




Theorem 3 If G = (V| F) is k-regular and A= max(A(G), 2vk — 1), then for any non-empty
subset X of V' of size at most k_1/5|V|, the average degree o of the subgraph of G induced on X 1s

at most

where the constant behind the O s a small absolute constant.

Proof We use the same notations as in Theorem 1. As noted before, the matrix Mf( can be
regarded as the matrix of the weighted graph on X that is induced on X and has in addition a loop
of weight (k — 1)_1/26_9(]6’ — Ax(v)) on each node v of X. By Fact 1, we have yx - My xx <
Ao(ME&)|X|, which translates into

k—o

o+ ﬁ S 2\/]6’ - 1(1+O(€))COSh9

This implies

2(k — 1)69 coshd — k
< 1+0
7S T e (O

= (VEk—1¢ £ 1)(1 + O(e)).

We conclude by noting that e’ = cosh 6 + \/cosh?’6 — 1. B

5 A family of almost Ramanujan graphs with expansion %/2

In this section, we construct explicity a family of k-regular graphs (7,, containing subsets of sublinear
size having expansion k/2, and such that A(G,) = (2+ o(1))vk — 1. For this, we need the following

lemma.

Lemma 4 Consider a graph on a vertex set W, a subset X of W, a posittive integer h, and s €
L%2(W). Let X; be the set of nodes at distance i from X. Assume the following conditions hold:

1. Forh—1<14,j <h, all nodes in X; have the same number of neighbors in X;.
2. The vector s is constant on Xp_1 and on Xj.
3. s has positive components and As < ps on Bp_1(X), where p is a positive real number.
Then for any g € L*(W) such that |Ag(u)| = plg(u)| for u € Br_1(X), we have
Toex, 000 Suex, , 00’
Yvex, S0 T Yiex,_, s(v)

Proof Tet P, P,_; and P be the projections on the sets Bp_1(X), Xp_1 and X} respectively.
We need to show that ||Pug|[*/[|Pas||* > [|Pa-1g]*/l|Pa-1s|]”. Tet Ap = (P 4 Pp)A(P + Pp). The

operator Ay corresponds in some sense to the adjacency matrix of the subgraph induced on By (X),

but it acts on L?(W). By the conditions of the lemma, there exist positive coefficients o, 3 and ¥



such that P, Aps = yPrs and Ap Pps = aPys+ fPr_15. By hypothesis, we have Aps < uPs+~vPys.
Premultiplying both sides of this equation by P and A} yields successively

PAps < uPs

= us— uPys,
ApPAps < pAps — p(aPps+ fPr_15)
< pPs+ p(y — a)Pus — pBPy-1s.

But the matrix A, PAy — p? P — pu(y — o) Py + p3Py—1 has only nonnegative entries off its diagonal,
and so its largest eigenvalue is 0 since s is positive (Fact 4.) The quadratic form associated to this

matrix is therefore negative semi-definite (Fact 1), and so
AnPAng g <p*Pg-g+pu(y — a)Prg - g — ufPu-1g - g. (9)

Since both A, and P are selfadjoint and since P? = P, the left-hand side of Eq. 9 is equal to
[|PAng||>. We can rewrite Eq. 9 as follows:

1P Angll* < w2l Pgll® + uly — )l Pagll* — nBl|Pa-1g]*.

But ||PAnrg|| = p||Pg|| by hypothesis, and so

(v = )[Pagll® > Bl Pr-rgll*. (10)

On the other hand, since Ay, and P, are selfadjoint, we have A, Pys-5s = Py Ays-s, and so a||Pys||?+
B||Pr-15]1? = ¥||Pns||?. Comparing this with Eq. 10 concludes the proof. l

Theorem 4 For any integer k such that k — 1 is prime, we can explicitly construct an infinite

family of k-regular graphs Gy, on n vertices whose linear expansion is k/2 and such that A\ (Gp) <
2k — 1(1 + 2log® log n/ log; n).

Proof We construct the family (G,,) by altering the known constructions of explicit Ramanujan
graphs, so that the expansion of (G},) is /2. From [23] and [26], we know that we can explicitly
construct an infinite family of bipartite Ramanujan graphs (F,) on n vertices whose girth ¢(F),)
is (4/3 4 o(1))log,_yn. Let F, = (V,E) be an element of the family, u € V' a vertex of Fj, and
Il =1e(Fn)/2] — 2. Let uy,...,up be the neighbors of u and let vy, ..., vy be k vertices at distance
two from u such that (u;,v;) € E. The subgraph of Fj, induced on Bjyi({u}) is a tree since it
contains no cycles. Let u’ and v be two elements not belonging to V. Consider the k-regular graph
Gpy2 = (V' E"), where V! = VU {u/ v} and B/ = F U Ule{(u’,ui), (us, u'), (V) v;), (v5,0")} —
Ule{(ui,vi), (vs,u;)}. Fig. 1 shows the graph Gp 42 in the neighborhood of u in the case k = 3.
For shorthand, we denote Ap, by A, Ag,,, by A" and A;(A4’) by M. We need to show that A" <
(24 o(1))Vk — 1. Assume that X > 2y/k — 1 (otherwise we are done), and let A’ = 2/k — 1 cosh @',
with ¢/ > 0. Let g € L2(V') be an eigenvector corresponding to X’.

We outline informally the basic ideas of the proof. Roughly speaking, we will show that the
values that ¢ takes on the nodes u’, v, u;, v; are small compared to ||g||. This implies that ¢ is close
in ly-norm to its restriction f on V. Lemma 1 then implies that f-Af < (24 0(1))vk — 1||g||>. But,
since g(u'), g(v"), g(u;) and g(v;) are small, the scalar product f - Af is close to g - A’g = XN||g]|?,

and so X < (24 o(1))Vk — 1.

10



Figure 1: The graph G412 in the neighborhood of u in the case k = 3. The dotted edges
are those belonging to £ — F'.

Since u and «’ have the same neighbors in G, 42 and X’ # 0, we have g(u) = ¢g(u’). By Eq. 3,

we have

Nlgll? g-A'g (11)

k k

= [oAf=2) glu)g(vi) +2 3 g(w)g(wi) +23g()g(vi).

i=1 i=1

We upper bound —2g(u;)g(v;) by g(u;)?+g(v;)?. On the other hand, the equality (A’g)(w') = M g(u')
implies that

1 ko
g(u")g(u;) = Y<Z g(u;)) < v Zg(ui)2~

i=1 i=1

-

1l
-

(3

A similar relation holds for v'. Combining this with Eq. 11, we get

k
2k
Mgl < f-AF+ 1+ 37) D (g(ui)* + g(vi)*). (12)
i=1
We use Lemma 1 to bound the term f-Af. Note that }°, .\, f(w) = —g(w')—g(v') since g € LF(V’),

and so

FAT S MNP+ o)+ g0
< E Tl — g0 — g0 + gl + (0')?)
< 2E= Tl

for sufficiently large n. Combining this with Eq. 12 and noting that 14 2k/) < 4v/k — 1, we obtain

NMlgll* < 2vk = 1(|lg]” + 2 Z(g(w)2 +9(v:)%)). (13)

11



We now compare g(u;) and g(v;) to ||g]|. Tet s be the function on V' defined by s(u) = s(u') = k
and, for v € V' — {u,u'} at distance i from u, s(v) = 2(k — 1)1_i/2 cosh i’. An easy calculation
shows that the function s verifies the conditions of Lemma 4 for the graph G’, with X = {u,u'},
i =X, and for any integer h between 1 and [+ 1. Hence

lall> > > g(v)?

vEX 41

Dot 5=

\Y

>
S w07 2

k — 2 cosh? (I+1)0 ul
k=1 (:osh2 i ;g
>

k
—cosh (16") Zg
i=1

Similarly, ||g]|? > %cosh (10" ZZ 1 9(vi)?. Combining this with Eq. 13, we get

coshf/ <14 ———.
- cosh? 1¢

Solving Eq. 14 yields ¢’ < (logl)/l for sufficiently large n, and so

6’ log? 1
X = 2VE—T(14+ (1 +o(1))) < 2VE—1(1+ 2%).
ogLn
Theorem 2 implies that the linear expansion of the family (G) is at least k/2. Since the subset
{u,u'} has k neighbors, this bound is tight. l

If k—1is a prime congruent to 1 modulo 4, we know from [23] that there exists an infinite family of
non-bipartite k-regular Ramanujan graphs with girth at least (2/340(1))log,_, n. By repeating the
construction in Theorem 4, we obtain k-regular graphs whose second largest eigenvalue in absolute
value is (2 4 o(1))vk — 1 and linear expansion k/2. Moreover, by adjoining nodes at regions of the
graph at sufficiently large distance from each other, we can construct for any m = m(n) = o(n)
a family of k-regular graphs whose second largest eigenvalue in absolute value is (2 4+ o(1))Vk — 1
and containing a subset of size 2m with expansion k/2. This can be shown by a proof similar to
Theorem 4.

6 Random walks

We show that the probability that a walk stays inside a given set has an exponential decay in the
length of the walk. Our bound improves upon previous results in [2, 16], and is shown to be optimal

for many values of the parameters.

Corollary 1 If G = (V, E) is k-regular and W a subset of V', the fraction of walks in G of length
whose all vertices belong to W is at most p (o + p — aﬂ)l, where oo = Ay /k and p = |W|/n.

Proof The number of walks of length [ in W is equal to the sum of entries of Aw!, and so
the fraction of walks of length [ in W is equal to ((Aw)'xw - yw)/(k'n). On the other hand, since

12



Ao(Aw ) is the largest eigenvalue of Aw in absolute value, the largest eigenvalue of Aw'is (Ao(Aw))L.

Using Lemma 2 and Fact 1, we conclude that
(Aw'xw) - xw < Qo(Aw)) llxw[” < g (x4 k= M)’

as desired. W

Define the density of a subset of vertices to be the ratio of its size to the total number of
vertices. Corollary 1 is optimal in the following sense: for any rational o € [1/2, 1] and any rational
u € [0,1], there exists an arbitrary large k-regular graph G and a subset W of G of density p
such that A1(G) = ak and, for any integer [, the fraction of walks in W of length I is equal to
ulo+p— aﬂ)l. Indeed, let G = Kyq0 X K, where b = a(1 — &) /v and Kgq0 X K3 is the graph on
V={l,...;a+2} x{1,...,b}, with ((¢,7),(¢,7")) € F if and only if i = i’ XOR j = j'. The graph
G is regular of degree a + b; its eigenvalues are a + b,a,b — 2 and =2, and A (G) = a = a(a + b).
Let W={1,...,a+2} x {1,..., ub}. The set W has density g in V', and the fraction of walks in
W of length [ is p(a + pb)!/(a + b)!, which is equal to the value given by Corollary 1.

7 Other applications

We list three applications of Theorems 2, 3.

1. Random regular graphs. It was shown in [13] that, if k is even, then for a random k-regular
graphs G, we have A\ (G) < 2v/k — 1+ O(log k) with high probability. Using Theorem 2, we
deduce that for a random regular graph, we can prove with high probability in polynomaal
time that linear sized subsets (of density at most k=€ where ¢ = k_1/4) have expansion at

least

2k — 1 + O(log k))?

2. Selection networks. We can use Theorem 2 to build explicit selection networks of small

. (1 - % - -t ) (1+0() = & — 01087 k).

size. A selection network is a network of comparators that classifies a set of n numbers,
where n is even, into two subsets of n/2 numbers such that any element in the first subset
is smaller than any element in the second subset. In [28], a probabilistic construction of a
selection network is given using an asymptotic upper bound of 2nlog, n comparators. Also,
an upper bound slightly less than 6nlog, n is shown by a deterministic construction. Using
Theorem 2, we can construct selection networks of asymptotic size (34 o(1))nlog, n. Indeed,
it is shown in [28] how to construct selection networks of size (2+o0(1))n log, n from expanders
of degree 4 having linear expansion at least 3. The construction can be easily generalized to
build selection networks of size k(1/2+ o(1))n log, n from expanders of degree k having linear
expansion at least 3. Theorem 2 then shows that we can build explicit selection networks of

size (3 + o(1))nlog, n using 6-regular Ramanujan graphs.

3. Extrovert graphs. Given a graph G = (V, F) and a subset X of V| an element of X is
said to be extrovert if at least half of its neighbors are outside X. A family of graphs is
called extrovert if all linear-sized subsets contain a constant fraction of extrovert nodes. Such

graphs have been used [11] to solve the token distribution problem. Theorem 3 shows that
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the average degree of the nodes of a linear-sized induced subgraph of a k-regular Ramanujan
graph is upper bounded by roughly 1 4+ +/k — 1, which is less than k/2 for k > 7. This shows
that Ramanujan graphs of degree at least 7 are extrovert graphs. Classical results [4] require
the degree to be at least 15.

Concluding remarks and further work

1. Let H be a graph of maximum degree at most k, and A a real number no smaller than 2k — 1.

Theorem 1 implies that, if there exists an infinite family (7,, of k-regular graphs containing H
as an induced subgraph and such that A(G,) < (1 + o(1))A, then Ao(M%) < X. (M can be
defined similarly to M)G() If £ — 1 1is a prime congruent to 1 modulo 4, this condition can be
shown to be sufficient [20].

. It 18 still an open question whether there exists a family of Ramanujan graphs with linear

expansion at most k/2.

. It would be interesting to calculate the exact value of the linear expansion of the known explicit

constructions of Ramanujan graphs [23, 26]. Theorem 2 shows that it is at least £/2. On the
other hand, an easy combinatorial argument shows that the linear expansion of any family of
k-regular graphs is at most £ — 1. Besides being Ramanujan, the graphs constructed in [23, 26]
have other interesting combinatorial properties. For example, they are Cayley graphs and have
high girth, unlike the graphs that we constructed in Section 5. This leads us to conjecture
that their linear expansion is strictly greater than k/2. Any explicit construction of k-regular

graphs with provable linear expansion strictly greater than k/2 would also be interesting.
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