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Abstract

We consider schemes for reuse-efficient packet ac-
cess in wireless data networks. We show that comput-
ing the mazimum ergodic packet arrival rate 1s NP-
hard. We give an upper bound on the marimum er-
godic throughput in terms of the eigenvalues of ma-
trices related to the path-gain matriz. We present
simple, practical heuristic algorithms which exhibit
good throughput and packet delay and report on re-
sults of preliminary simulations. More sophisticated
algorithms that yield optimal throughput are also pre-
sented. A recent result of McKeown, Anantharam and
Walrand on scheduling of input-queuned switches is ob-
tained as a byproduct.

1. Introduction

This paper addresses schemes for reuse-efficient trans-
mission in wireless packet data networks. Particular
attention is paid to recent proposals (see for example
[19]) for wireless data packet networks in which the
medium access (MAC) layer protocol is:

(i) deterministically scheduled.
(i1) has good delay performance.

(iii) provides near-optimal channel capacity in a sin-
gle channel (i.e. is reuse-efficient).

References [11, 10] provide an overview of some of
the salient themes and constraints of particular rele-
vance in the design of wireless packet data networks.
Because of the limited availability of the spectrum, in-
terference management and power control are crucial
to obtain optimum system capacity in wireless net-
works. Routing in a wireless network involves both
spatial and temporal allocation of resources to meet
given service demands while respecting quality of ser-
vice (QoS) constraints such as maximum packet delay.

Such QoS guarantees are part of ATM (Asynchronous
Transfer Mode) contracts. An additional concern in
wireless data networks is fading, 1.e. the degradation
of received signal power at the receiver. Due to the
nature of the channel, the deliverable payload of a
wireless data channel is not all that high. Current
estimates lie in the range of 1 to 10 Mbps, in the op-
timistic case.

Throughput can also be severely limited by the fact
that multiple users are trying to use a given chan-
nel at the same time. This is well known from expe-
rience with ALOHA and the Carrier-Sense-Multiple-
Access CSMA protocols typically used in wired and
wireless local area networks (LAN’s). ALOHA suffers
from poor throughput while CSMA can be sensitive to
thresholds for collision detection as well as the choice
of methods for collision-resolution [18, 1].

We study in this paper an alternate approach to
ALOHA and CSMA in which multiple stations with
packets ready to transmit can determine ahead of time
whether the signal-to-interference ratio (STR) required
for adequate bit-error-rate (BER) is obtainable in the
next transmission interval. Thus channel access is
conflict-free with good BER performance. However
the scheduling of stations must be done carefully to
get good throughput as well. This approach can be ap-
plied to either a time-division multiple access (TDMA)
system or a channel-division multiple access (CDMA)
system.

Related scheduling problems have been studied
for input-queued switches (see [14] and references
therein). Scheduling problems where requests that
cannot be served are blocked and cleared rather than
being queued have been analyzed in [7, 15, 6].

2. Contribution

This paper presents new bounds on the available
throughput in a fixed wireless data network. It is



shown that the problem of determining the maxi-
mum stable throughput for a system with unbounded
buffers is NP-hard. However, we address this problem
by considering a variety of practical algorithms which
obtain good throughput, good signal-to-interference
protection and are easy to implement, even for sys-
tems with hundreds of links for which simultaneous
access is desired (a link is an ordered pair of stations,
the first of which is the transmitier, the second be-
ing the receiver). Our algorithms might be adapted to
cases where there are mobile terminals moving within
a service area but, for simplicity, we only consider a
wireless network in which all the terminals are fixed.
We study the case of a single channel; extension of
ideas presented here to multiple channels is possible.

We consider two modes of operation. In the first,
discrete interference relationships between every pair
of links are determined before transmission and are
assumed to remain constant. That is, the interference
constraints are represented by an undirected graph in
which the nodes are links and any edge between two
links exist if both links may not be in simultaneous
operation. In the second mode, aggregate interference
is taken into account and the controller has detailed
information on the propagation path losses between
any station pair; power conirol may or may not be
used. With power control, transmitter powers may
be varied in order to alter the interference environ-
ment and influence the SIR’s. It is known that in
the case where power control is possible significant ca-
pacity gains may be realized, though at the cost of a
more difficult interference management problem. Our
theoretical results on the maximum stable throughput
apply in either context.

We assume that all scheduling is done by a central
controller; distributed implementations are currently
under study. The central controller is aware of all rout-
ing requests and packet queue states at every instant,
and all conflict relationships between links or the ac-
tual path-gains. This model is quite reasonable for
a moderate number of stations (100 - 200), as is the
case for current systems. Indeed currently deployed
AMPS (Advanced Mobile Phone Service) wireless sys-
tems integrate the management of up to 200 stations
(cell sites) in a single service center known as a mobile
switching center (MSC).

Our algorithms can also be used for other schedul-
ing problems in which multiple requests contend for
the same resources. In particular, using a Lemma
in [14], we note in Section 6 that a recent result of
McKeown, Anantharam and Walrand [14] on schedul-
ing of input-queued switches follows from our Theo-

rem 6.1. Our proof is similar but simpler than [14].

3. The Graph Model

Let G = [G;;] denote the path-gain matrix, where Gj;
equals the path-gain from the transmitter of link i to
the receiver of link j. At a given time-step, let p; be
the power level of transmitter of link i (in general p;
is a function of the link 7, not only of the transmit-
ter of link é): p; > 0 if and only if link 7 is active.
Thus, the interference signal received by the receiver
of link 7 is Z]»#Z- Gj;pj, and the power received by
the receiver of link ¢ from the transmitter of link ¢
is Gyp;. Let m be the number of links, v; be the re-
quired signal-to-interference ratio (SIR) for link 7, and
I = diag(v1,...,7vm) be the diagonal matrix with the
v;’s on its diagonal.

Let N be any real matrix with nonnegative off-
diagonal entries. It follows from the theory of non-
negative matrices [17] that one eigenvalue of N that
has the largest real part is real (and uniquely deter-
mined). Tt will be denoted by Ag(V).

Let G’ = [G"i;] where G}; = Gij/Gi; for i # j, and
Gl; = 0. A set of links S can be activated (i.e. is
feasible) at a given time-step if and only if there exists
a power vector p whose support is S (i.e. p; > 0if and
only if i € S) such that TG'p 4+ v < p, where v is a
noise vector, and element-wise comparison is implied.
In other words, the SIR at any active link is above the
SIR threshold. Assuming that the power vector can
be arbitrary (i.e. there is no upper constraint on the
transmitter power), this is equivalent (see [16, 20] and
references therein) to the condition /\O(G’S—Fgl) < 0,
where GY is the submatrix induced by the elements of
S. Let H={S1,...,Sh} be the collection of feasible
subsets of the links. Note that any subset of a feasible
set, including the empty set, is feasible.

Each link 7 has a queue associated with it. We
assume that packets arrive at link 7 according to a
Poisson distribution of rate r;. When a packet arrives
at link ¢, it 1s appended to the tail of the queue at that
link. When a set of links S is scheduled at a time-step,
the head of the queue of each link in S gets removed
from the queue.

4. Stability

Let a;(t) be the number of packets generated at link ¢
at time ¢, and a(¢) = (a;(¢)) be the arrival vector. Let
r = (r;) be the vector of arrival rates.



Theorem 4.1. If there is a scheduling algorithm for
which the system s ergodic, then r 1is strictly dom-
mnated by a conver combination of the characteristic
vectors of the Sy ’s. Conversely, if v s strictly dom-
mnated by a conver combination of the characteristic
vectors of the Sy ’s, then there exists a scheduling al-
gorithm for which the system s ergodic.

Proof Assume first that there exists a scheduling al-
gorithm for which the system is ergodic. Let ¢;(t) be
the queue-size of link ¢ at time ¢, and q(¢) = (¢;(¢))
be the vector of queue-sizes. Let S(t) be the feasi-
ble subset scheduled at time ¢, and xs(;) be its 0 — 1
characteristic vector. We have

q@) =a(0)+a(l)+ -+ at —1)—tv, (4.1)

where v = %(XS(O) + Xs(1) + -+ Xs@-1)). Since
v belongs to the set C' of convex combinations of
the characteristic vectors of the Si’s, so does its ex-
pected value. Thus, it follows from Eq. 4.1 that
r — E[q(t)]/t € C. By taking the limit as ¢ goes to
infinity, we conclude that » € C, since C' is a closed
set.

We now show that r is strictly dominated by a vec-
tor in C'. The total arrival at link ¢ during the interval
[0, —1] has a Poisson distribution with mean r;t. Let
B; be the event that it exceeds r;t ++/r;t. The proba-
bility of B; is at least an absolute constant ¢. If follows
from Eq. 4.1 that

E[q(t)|B1,..., Bm] > tr + Vt\/r —tE[v|By, ..., Bn],

(4.2)
where /7 is the vector (y/r;). The left-hand side
of Eq. 4.2 is upper bounded by E [¢(¢)]/c¢™, which is
bounded by a constant independent of ¢. By choosing
t sufficiently large, we conclude that r is strictly dom-
inated by the vector E[v|By,..., By], which belongs
to C.

Conversely, we show that if E [a] is strictly dom-
inated by a vector in C, then there is a schedul-
ing algorithm for which the system is ergodic. As-
sume that (1 + €)r < ZZ:1 arxs,, with ap > 0 and
Z:Il ar = 1. At each time-step, schedule subset Sy
with probability ay. Then the system is ergodic and
the expected queue-size of each link is O(1/¢). This is
because the arrival rate at link 7 1s 7; and the departure
rate, when link 7 is nonempty, is at least (14¢)r;. Our
claim then follows from standard queuing theory [8].

Corollary 4.2. For general G, (v;) and r, determin-
ing whether there is a scheduling algorithm for which
the system s ergodic is NP-hard.

Proof If GG is the adjacency matrix of a graph K, and
if v; = 1/2 for all i, then the feasible subsets are the
independent sets of K. If r; = s for all links ¢, then
Theorem 4.1 implies that there is a scheduling algo-
rithm for which 7 is ergodic if and only if 1/s is greater
than the fractional chromatic number of K. The frac-
tional chromatic number of a graph is the minimum
sum of nonnegative coefficients g1, ---, By such that,
if we assign Gy to independent set Sy, the sum of val-
ues assigned to the independent sets containing w is
at least 1 for each vertex w. The fractional chromatic
number of a graph is known to be NP-hard to com-

pute [13]. W

5. Upper bound on the maxi-
mum ergodic throughput

We give in this section a necessary, but not sufficient,
condition to determine whether there is a scheduling
algorithm for which the system is ergodic. This con-
dition can be checked in polynomial time.

The eigenvalues of any real symmetric m x m ma-
trix M are known to be real, and will be denoted by

A(M) > (M) > ... > Aaa (M)

Theorem 5.1. If there is a scheduling algorithm for
which the system is ergodic, then

1
B)<1

A(R— ——
ol A_1(R-1B) /=7

where R 1s the diagonal matriz representing the vector
r, and B = (min(ng, G;;)) — It

Proof Since the matrices B and G’ — I'"! have non-
negative off-diagonal entries and B is dominated by
G'—T71 Xo(Bs) < Ao(Gly — Fgl) for any subset S
of links [17]. In particular, Ag(Bg) < 0 if S is fea-
sible. As noted before, » = 3, arxs,, where the
ap’s are nonnegative and sum up to 1. Let z =
—1/An-1(R71B), where A,_1(R™!B) is the smallest
eigenvalue of R~!B. Since the diagonal elements of
B are negative, z > 0. Let f be an eigenvector
corresponding to the largest eigenvalue of R + zB,
and fr its projection on Sy. That is, the ith co-
ordinate of fj 1s equal to the ith coordinate of f
if 2 € Si, and is equal to 0 otherwise. The small-
est eigenvalue of I + xR™'B is 0, by definition of
x. The matrices I + R™"2BR~Y? and I + xR 'B
have the same eigenvalues since I +zR™/2BR~1/? =

RY*(I+zR™'B)R™"/? andso I+xR~'?BR~/? is



positive semi-definite. Hence the matrix R + zB is
also positive semi-definite, since R+ zB = R1/2(I +
:L‘R_l/zBR_l/z)Rl/z. It follows that the quadratic
form < g, f >= ¢ - (R + B)f is positive semi-
definite. The Cauchy-Schwartz inequality with re-
spect to this positive semi-definite form implies that
< g,h>% < <g,g><h,h>, for any m-dimensional
real vectors g and h. Taking g = R™'f; and h = f we
get

(R™'fi - (R+xB)f)?

< (R (R4 2BYRT S - (R4 2B)))
= (fi R +zR'fi - BR™ fi)Ao(R+ 2 B)|| f||?
< (fi - R fr)Ao(R+2B)|If|I.

The third inequality follows from the inequality
Xo(Bs, ) <0, and thus R7'f; - BR™1f; < 0. But

Ry (R+2B)f = X(R+zB)R™'fiy-f
= M(R+zB)R™'fi - fr.

Together with the preceding equation, this implies
that

(fr - R™" fr)Ao(R+ 2B) < ||f|*.

Since

Sar(fi-R7) = Y ow(fe RS

k

Rf-R7'f
= |f1P

we conclude that Ag(R+ zB) < 1, as desired. MW

Corollary 5.2. If all arrival rates are equal to v and
if the system is ergodic, then

_1(B)
TS 3 TB) = (B

Remark. The above inequalities hold when B is
any non-null symmetric matrix such that 0 < (B +
1), < min(Gj;, G5;), for all 4,j. This is be-
cause this condition implies that Ag(Bs) < Ag(G% —
Fgl) < 0. In our experiments, we have chosen
Biy = (min(Gly, G, (7)™ /%) — T .

When r is constant across links and we consider
only pairwise interference, i.e. when the feasible sub-
sets are the independent sets of a graph K, Eq. 5.1is a
slightly stronger version of Hoffman’s bound (see [2],
and [9] for related work) on the chromatic number.
Indeed, we can model this case by setting G’ to be the

. (5.1)

adjacency matrix of K and setting T' = ¢~1I, where
0 < e < 1. By letting € tend to 0, we get the bound

An_1(K)
S (K = Ao(K)

. (5.2)

Using results from [12, 4], it can be shown that the
bound in Eq. 5.1 can be off by a factor of at least
Q(m/?o(\/ lOgm)) from optimal, for general G and T,
even if B is chosen optimally. However, in the simu-
lations we performed, the bound given by Eq. 5.1 was
off by only a small multiplicative factor from optimal,
as discussed in Section 7.

6. Algorithms and Heuristics

In a real-life application, time slot lengths are likely
to be in the range of 10’s of msecs. This places a
bound on the complexity of algorithms for practical
implementation. A natural algorithm is to schedule a
largest feasible subset at each time-step. However,
there are simple examples (i.e. when the interfer-
ence graph is a large star and the arrival rates are
slightly smaller than .5) where this algorithm yields
sub-optimal throughput and some stations may be
starved for long periods. Consequently packet delays
will be high.

We present below two algorithms that yield opti-
mal throughput with good delay performance. How-
ever, they are difficult and impractical to implement.
The remaining algorithms achieve good (albeit, in gen-
eral, sub-optimal) throughput with good delay perfor-
mance. Furthermore, they are relatively easy to im-
plement.

Algorithm Max-Weight: at each time-step, sched-
ule a maximum weighted feasible subset. The weight
of a link can be its queue-size (s-Max-Weight), the
waiting time of the oldest packet in its queue (w-Max-
Weight), or any other potential function. By conven-
tion, the waiting time at time ¢ of a packet generated
at time s ist — s + 1.

We show that both Algorithm s-Max-Weight and
Algorithm w-Max-Weight give the optimal stable
throughput. Furthermore, the ergodic delay under Al-
gorithm w-Max-Weight if off from the optimal ergodic
delay by a factor of order m plus an additive factor
(see Theorem 6.2 for a detailed statement.) For typi-
cal networks, however, we suspect that the behavior of
Algorithm w-Max-Weight is much closer to “optimal-
ity” than what is implied by Theorem 6.2. The proof
of these results for Algorithm w-Max-Weight is omit-
ted in this abstract for lack of space, but will appear




in the journal version of the paper. We note that, un-
fortunately, it 1s NP-hard to find a maximum weighted
feasible subset in general.

Let Sg(s) be the subset scheduled by Algorithm
Max-Weight at time ¢, and ¢'(t) = q(¢) + a(t).

Theorem 6.1. Ifr is such that there is an algorithm
for which the system is ergodic, then algorithm s-Maz-
Weight achieves ergodicity.

Proof By Theorem 4.1, r < v’ = 22:1 arup, where
Ur = XS, @ > 0 and 22:1 ar = 1. For any time-
step £, q(t +1) = q'(t) — up(e).

g+ DI = llg'(t) — ko)l
a" O + w1 — 24" () - urge)-

On the other hand, by definition of the algorithm,
k(t) is chosen so that ¢'(t) - up(s) is maximum. As a
consequence,

h
q'(t) - upey > Zakq’(t).uk
k=1

= @)
Combining the two preceding equations yields
llg(t + DI
< g O + Nuweol]? = 24'() -7
a1 + [la®)]]* + 24(t) - at) + [Juzo)|[*
—2¢'(t) -
Ha@I1” + lla®)I* + 24(1) - (a(t) = ') + m.

Taking expectations and noting that ¢(¢) and a(?) are
independent, it follows that

Efllgt+DIP] < Efllg®IP] = 2E[g(0)] - ('~ 1)
+E [|la(®)|"] + m,

IN

and so

2r' = r) - Eq(t) + q(t — 1) + - + ¢(0)]
<+ 1) (E[lall’] +m).

Since r < 7/, this implies that the expected value of
() +q(t —1)+---+¢(0))/(t + 1) is bounded, and

thus the system is ergodic.

Theorem 6.2. Ifr is such that there is an algorithm
for which the system s ergodic, then Algorithm w-
Maz-Weight achieves ergodicity. The ergodic waiting
time under algorithm w-Maz-Weight 1s off the ergodic
waiting time under any algorithm for which the system
1s ergodic by at most a multiplicative factor of order
m plus an additive factor of order m/r - 1.

Proof Omitted for lack of space. M

The results in this section also apply for other
scheduling problems where the feasible subsets are
drawn from a given collection H. In particular, for
input-queued switches, H consists of all matchings.
It is shown in [14] that for admissible arrival rates,
the algorithm that schedules a maximum weighted
matching (where the weight is the queue-size) achieves
100% throughput (see [14] for details). The maximum
weighted matching coincides with Algorithm s-Max-
Weight in this setting. Thus, the result in [14] fol-
lows from Theorem 6.1. This is because, as shown in
Lemma 1 in [14], an admissible rate vector is a convex
combination of characteristic vectors of matchings. It
follows from Theorem 6.2 that the maximum weighted
matching algorithm where the weights are the waiting
times of the oldest packet in queue also achieves 100%
throughput.

Note that if the vectors r and (;) and the ma-
trix G are known in advance, it is possible to find a
vector 7 € C that strictly dominates r using linear
programming. For general G and (v;), this might take
an exponential amount of preprocessing time, though.
Since H lies in a vector space of dimension m, r’
can be written as a convex combination of at most
m + 1 characteristic vectors of feasible subsets. These
m+ 1 subsets can be determined using an exponential
amount of preprocessing time. Once these subsets are
determined, it is easy to run a variant version of Al-
gorithm Max-Weight by choosing the subset of maxi-
mum weight among these m+1 subsets. Theorems 6.1
and 6.2 also hold for this version of Algorithm Max-
Weight.

An exponential bound with a small decay rate can
be shown to hold on the tail of the distribution of the
queue-sizes of Algorithms s-Max-Weight and w-Max-
Weight. We show below that, for a suitable weight
function, a variant of Algorithm Max-Weight gives an
exponential bound on the tail of the distribution of the
queue-sizes with a better decay rate. This algorithm
assumes that, for a given € > 0, there is a scheduling
algorithm for which the system is stable under the
arrival vector (1 4 ¢)r. An algorithm of similar flavor
has been considered [6] for routing in ATM networks.

For fixed @ = O(¢) to be determined later, let

¢(z) = 7 and ®(q) = 3_; 6(4s).

Algorithm Exp-Weight: At time step ¢, schedule
a feasible subset so that ®(g(¢ 4+ 1)) is minimized.

As in the case for Algorithm Max-Weight, Algo-
rithm Exp-Weight is NP-hard to implement.




Theorem 6.3. Assume that r is such that there is an
algorithm for which the system is ergodic under the
arrival vector (1 + ¢)r. Then Algorithm Ezxp- Weight
achieves ergodicity, for a suitable « = O(¢). Further-
more, the tail of the ergodic queue-size distribution at
any link is exponentially decreasing with a decay rate

Q(e).

Proof Since ¢}(t) = ¢;(t) + a;(t) and ¢;(¢) and a;(2)
are independent,

Elo(¢;(®)] = Ele(q:(t)]E [p(ai(?))]
e VE [6(ai(t))].

Since there is an algorithm for which the system is
ergodic under the arrival vector (1 + ¢)r, (1 + ¢)r =
Zk arpXs,, where the ay’s are nonnegative and sum
up to 1, as shown in Theorem 4.1. Given the vector
q'(t), assume that we schedule Sy with probability ay
at time ¢. If link 7 is nonempty, ¢;(¢ + 1) = ¢}(¥) — 1
with probability p; = (1 + €)r;. Thus,

E[¢(qi(t + 1))
< (T—pi+pie”)o(q (1) +1
= (1—pi+pie”®)e " VE [6(q;()] + 1.

A simple calculation shows that, for a suitable
a = O(e), the coefficient of E [¢(g;(¢))] in the above
equation is at most 1 —©(r;e?) < 1—O(rmine?), where
Pmin = min; r;. It follows that, if S, i1s chosen with
probability apg,

E[0(g(t + 1)) < (1 = O(rmine)E [B(4(8))] + m.
(6.1)
The left-hand side of Equation 6.1 is a convex com-
bination of the expected values of ®(¢(¢t + 1)) that
we would have obtained by scheduling deterministi-
cally each of the Si’s. This implies that Algorithm
Exp-Weight maintains the invariant in Eq. 6.1. We
conclude that

Bla)] =0 ().

Tmin€

for all . As a consequence,

as desired. W

We have experimented with the following heuris-
tics. The first one was suggested in [19].

Heuristic Sequential: Initialize the subset S to be

scheduled as the empty set. Order the links according
to their weight and scan them in that order. If SU{i}
is feasible, let S = S U {i}.

Heuristic R-Sequential: Initialize the subset S to
be scheduled as the empty set. For each remaining
link ¢, let R(7) be the set of remaining links j such
that SU {i,j} is not feasible. Add to S the remaining
link 7 such that w(é)/w(R(7)) is maximum. Delete the
remaining links j such that S U {j} is not feasible.

Proposition 6.4. When the feasible subsetls are the
independent sets of a graph K, the weight of the in-
dependent set obtained by Heuristic R-Sequential is at
least the total weight divided by 1+ Ao(K).

Proof In the case where the feasible subsets are the
independent sets of a graph K, the set R(i) is the set
of remaining links that are adjacent to ¢ in K. Let s be
the maximum ratio w(i)/w(R(7)) obtained in the first
iteration. Thus, w < sAw, where A is the adjacency
matrix of K. This implies that s > 1/Ag(K). The
same bound holds in subsequent iterations, since the
largest eigenvalue of a subgraph of K is upper bounded
by Ag(K). Thus, the weight of the independent set
I obtained by Heuristic R-Sequential i1s at least the
weight of K — I divided by Ag(K). This concludes the
proof. M

7. Implementation results

We present in this section the results of preliminary
simulations of some of our algorithms. The mean de-
lay is plotted versus offered traffic for each algorithm,
under either the fixed discrete conflict graph model or
with power control.

The graphs in Figures 1 through 4 are labeled using
the following simple scheme:

(1) A leading s- indicates that the queue-sizes were
used as the weights in the heuristics Sequential
and R-Sequential, while a leading w- indicates
that the waiting times were used.

(i1) A following pc- designation indicates that power
control was employed, while a following ci- desig-
nation indicates that in the algorithm no power
control was employed but the actual cumulative
interference was determined using the path-gain
matrix and assuming that all transmitter powers
were identical.
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Figure 1: Mean delay versus offered traffic for 25 sta-
tion, 150 link network at 1800MHz (PCS) in a large ur-
ban environment (discrete link conflict graph model).
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Figure 2: Mean delay versus offered traffic for 25 sta-
tion, 150 link network at 900MHz (cellular) in a subur-
ban environment (discrete link conflict graph model).
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Figure 3: Mean delay versus offered traffic for 25 sta-
tion, 150 link network at 900MHz (cellular) in a sub-
urban environment with power control.
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Figure 4: Mean delay versus offered traffic for 25 sta-
tion, 150 link network at 1800MHz (PCS) in a subur-
ban environment with power control.

Generally, our heuristics outperform those sug-
gested in [19] in terms of mean delay. Disappoint-
ing results, in terms of mean delay, were obtained
using the power control based algorithms versus the
algorithms based on the discrete interference model.
This can be explained by the fact that the latter al-
gorithms, by simplifying the interference model, give
worse signal-to-interference protection in general. The
SIR losses of the conflict graph based algorithms need
to be studied to quantify this effect.

7.1. Simulation model
We implemented the following simulation model:

1. 25 station locations were chosen at random points
within a square area, 100 km per side.

2. Terrain models (urban for large, medium and
small cities, suburban for open rural and quasi-
open rural) were those of Hata [5, 3].

3. The average link length was in the 10km range.
Links larger than 20 km were not considered due
to the excessive path loss. This resulted in 150
links between pairs of stations.

4. Log-normal shadow fading with a standard devia-
tion of 4dB was modeled as well but no multipath
propagation effects were included in the study.

5. The conflict graph was constructed by assuming
that a pair of links, 7 and j, could not operate
simultaneously if min(G;;, Gj;) <= 24 dB.

6. In the case where actual path gains were used, a
set of links was considered infeasible if the receiver
on any link had an SIR less than 24 dB.



7. The arrivals at each link had independent identi-
cal Poisson distributions.

Because we consider here a single-channel system,
in the conflict graph based model, a single station was
explicitly ruled out from simultaneously transmitting
to multiple sites.

7.2. Eigenvalue bounds

For the system corresponding to Figure 4, the eigen-
value bound technique of Section 5 yielded a bound of
0.244165 on the maximum stable packet arrival rate at
each link. The over-estimate over the apparent max-
imum stable arrival rate under Sequential was by
about a factor of 7. However it is not known how well
the latter algorithm is performing compared to the
optimum scheduling policy. The choice of the matrix
B was not optimized for this calculation. The cor-
responding bounds for the systems illustrated in Fig-
ures 1 through 3 were 0.166932,0.139353 and 0.244165

respectively.
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